

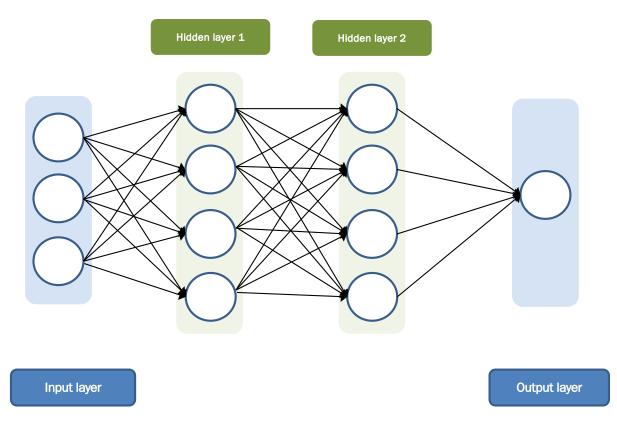
Using multiple GPUs for Machine Learning

Isaac Ye, HPTC @ York University

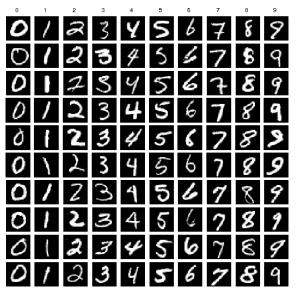
Isaac@sharcnet.ca

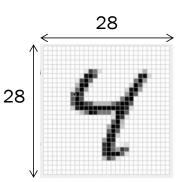
Objectives

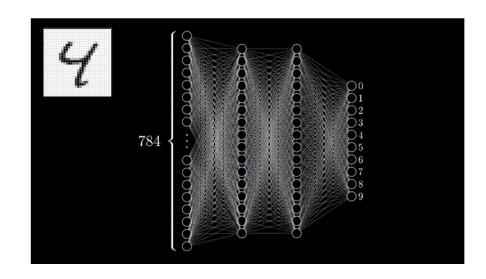
- ✓ Guide a beginner user to run his/her codes using GPU on Graham system.
- ✓ Introduce how to setup a job submission script for different ML frameworks (TensorFlow, PyTorch)
- ✓ Introduce several approaches in using multiple GPUs + multiple nodes
- ✓ Show how to use Tensorboard for PyTorch


Outline

- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

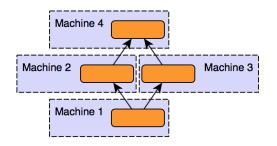

Deep Neural Network




compute calcul canada

Classification problem: MNIST

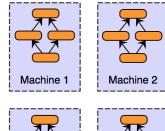
Handwritten data 60K train set and 10K test set Each image has a size of 28x28 (=784)

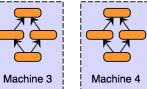


Parallelism

Model parallelism

Use the same data for every process but split the model among processes


Model Parallelism



Data parallelism

Use the same model for every process but feed it with split data

Data Parallelism

Outline

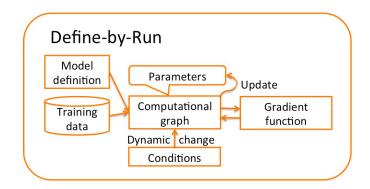
- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

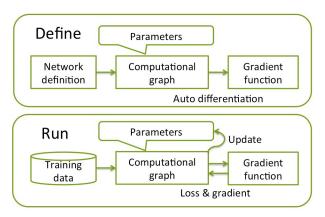
O PyTorch

- Rapidly growing in research community developed by Facebook
- A Python adaptation of Torch
- Caffe2 has been merged to PyTorch
- Define-by-Run type for neural networks
- Ease of expression and use
- https://github.com/pytorch/pytorch
- Version 1.7.1 is available in Graham

TensorFlow

- The most widely used framework opensourced by Google
- Runs on almost all architectures (CPU/GPU/TPU/etc)
- Define-and-Run type for neural networks
- Version 2.0+ has Define-by-Run component (Eager execution)
- <a href="https://github.com/tensorflow/ten
- Version 2.3.0 is available in Graham





Pros	Easy to use (Python support) Intuitive Dynamic graphs Research community prefers	Large community Heterogeneous architecture TF 2.0: Eager execution(Define-by-Run) Tensorboard (visualizing), Keras
Cons	Small community Less additional tools	Verbose Static graphs

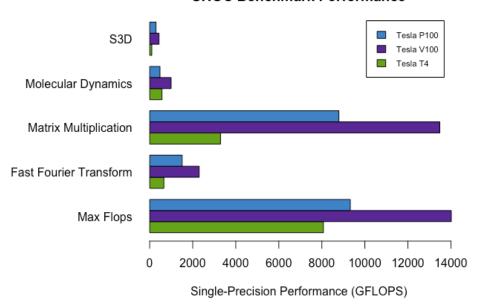
Outline

- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

GPU available in Graham

As of Feb, 2021

	# of nodes	# of GPU/node	GPU type	Note
Graham	320	2	P100 Pascal	gres=gpu:1
	70	8	V100 Volta	CPU/GPU ≤ 3.5 gres=gpu:v100:1
	144	4	T4 Turing (DL target)	CPU/GPU ≤ 3.5 gres=gpu:t4:1



Which GPUs?

Available GPUs in Graham

	P100	V100	T4
Availability	Best	Good	Better
Double Pre.	5.3 TF	7.8 TF	N/A
Single Pre.	10.6 TF	15.7 TF	8.1 TF
Tensor core	N/A	620	320

SHOC Benchmark Performance

https://www.microway.com/hpc-tech-tips/nvidia-turing-tesla-t4-hpc-performance-benchmarks/tesla_comparison_t4-p100-v100/

Virtual environment

Allows users to create virtual environments so that one can install Python modules easily Many versions of same module are possible

```
[isaac@gra-login2 ~]$ source ~/PT/bin/activate
(PT) [isaac@gra-login2 ~]$
(PT) [isaac@gra-login2 ~]$ deactivate
[isaac@gra-login2 ~]$
```


Virtual env. O PyTorch

```
[isaac@gra-login2 ~]$ module load StdEnv/2020
[isaac@gra-login2 ~]$ module load python
[isaac@gra-login2 ~]$ module load scipy-stack
[isaac@gra-login2 ~]$ module list
Currently Loaded Modules:
                               6) ucx/1.8.0
  1) CCconfig
                                                         11) python/3.8.2
                                                                                (t)
                               7) libfabric/1.10.1
  2) gentoo/2020
                      (S)
                                                         12) ipykernel/2020b
  3) gcccore/.9.3.0
                               8) openmpi/4.0.3
                                                         13) scipy-stack/2020b (math)
                      (H)
                                                    (m)
  4) imk1/2020.1.217
                      (math)
                               9) StdEnv/2020
                                                    (S)
  5) intel/2020.1.217 (t)
                              10) libffi/3.3
[isaac@gra-login2 ~]$ virtualenv --no-download PT
created virtual environment CPython3.8.2.final.0-64 in 2675ms
```


Graham supports 'wheels' for Python package installation.

(PT) [isaac@gra-login2 ~]\$ avail_wheels "*torch*"					
name	version	build	python	arch	
gpytorch	1.1.1		py2.py3	generic	
pytorch_pretrained_bert	0.6.1		py3	generic	
pytorch_transformers	1.1.0		py3	generic	
torch	1.7.1		cp38	generic	
torch_cluster	1.5.8		cp38	generic	
torch_geometric	1.6.3		py3	generic	
torch_scatter	2.0.5		cp38	generic	
torch_sparse	0.6.8		cp38	generic	
torch_spline_conv	1.2.0		cp38	generic	
torchaudio	0.7.2		cp38	generic	
torchfile	0.1.0		руЗ	generic	
torchio	0.16.22		py2.py3	generic	
torchnet	0.0.4		руЗ	generic	
torchsummary	1.5.1		руЗ	generic	
torchtext	0.6.0		руЗ	generic	
torchvision	0.8.2		cp38	generic	

Virtual env. O PyTorch

- (PT) [isaac@gra-login2 ~]\$ pip install --upgrade pip
- (PT) [isaac@gra-login2 ~]\$ pip install --no-index torch torchvision torchtext torchaudio
- (PT) [isaac@gra-login2 ~]\$ pip freeze |grep torch

torch==1.7.1 torchaudio==0.7.2 torchtext==0.6.0 torchvision==0.8.2

Virtual env. TensorFlow

```
[isaac@gra-login2 ~]$ module load StdEnv/2020
[isaac@gra-login2 ~]$ module load python
[isaac@gra-login2 ~]$ module load scipy-stack
 [isaac@gra-login2 ~]$ module list
 Currently Loaded Modules:
   1) CCconfig
                                6) ucx/1.8.0
                                                          11) python/3.8.2
                                                                                (t)
                                7) libfabric/1.10.1
   2) gentoo/2020
                       (S)
                                                          12) ipykernel/2020b
   3) gcccore/.9.3.0
                       (H)
                                8) openmpi/4.0.3
                                                     (m)
                                                          13) scipy-stack/2020b (math)
   4) imkl/2020.1.217
                       (math)
                                9) StdEnv/2020
                                                     (S)
   5) intel/2020.1.217 (t)
                               10) libffi/3.3
 [isaac@gra-login2 ~]$ virtualenv --no-download TF
```


Wheels TensorFlow

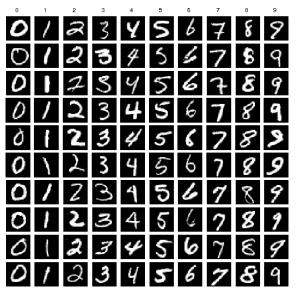
Graham supports 'wheels' for Python package installation.

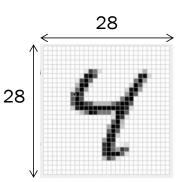
(TF) [isaac@gra-login2 ~]\$ ava	il_wheels "*tensor*" version build	python	arch
tensorboard	2.3.0	py3	generic
tensorboard_plugin_wit	1.7.0	py3	generic
tensorboardX	2.1	py2.py3	generic
tensorflow_addons	0.11.2	cp38	generic
tensorflow_cpu	2.3.0	cp38	generic
tensorflow_estimator	2.3.0	py2.py3	generic
tensorflow_federated	0.17.0	py2.py3	generic
tensorflow_gpu	2.3.0	cp38	generic
tensorflow_model_optimization	0.5.0	py2.py3	generic
tensorflow_privacy	0.5.1	руЗ	generic
tensorflow_probability	0.11.0	py2.py3	generic
tensorflow_tensorboard	1.5.1	руЗ	generic
tensorflow_text	2.3.0	cp38	generic

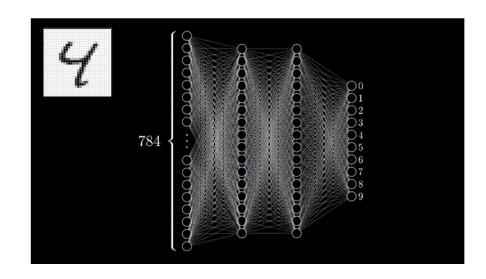
Virtual env. TensorFlow

- (TF) [isaac@gra-login2 ~]\$ pip install --upgrade pip
- (TF) [isaac@gra-login2 ~]\$ pip install --no-index tensorflow_gpu
- (TF) [isaac@gra-login2 ~]\$ pip freeze |grep tensor

```
tensorboard==2.3.0
tensorboard=plugin-wit==1.7.0
tensorflow-estimator==2.3.0
tensorflow-gpu==2.3.0
```



Outline


- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard



Classification problem: MNIST

Handwritten data 60K train set and 10K test set Each image has a size of 28x28 (=784)

A little peek in the code

```
import tensorflow as tf
from tensorflow.keras import Model, layers
import numpy as np
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
        print("Name:", gpu.name, " Type:", gpu.device_type)
```

```
import torch
from torchvision import datasets, transforms
import torch.nn as nn
import torch.optim as optim
from sklearn.metrics import accuracy_score
import time
import matplotlib.pyplot as plt
# ===== GPU selection ====== #
if torch.cuda.is_available():
   print('GPU is running')
else:
   print('CPU is running')
device = 'cuda:0' if torch.cuda.is available() else 'cpu'
model.to(device)
```


Running interactively

[isaac@gra-login2 MNIST]\$ salloc --time=00:10:00 --ntasks=1 --cpus-per-task=3 --mem=8000M --gres=gpu:t4:2 --account=def-isaac

[isaac@gra-login2 MNIST_tf]\$ source ~/TF/bin/activate
(TF) [isaac@gra-login2 MNIST_tf]\$ python tfmnist.py

O PyTorch

[isaac@gra1160 MNIST]\$ source ~/PT/bin/activate
(PT) [isaac@gra1160 MNIST]\$ python mnist.py

```
GPU is running
Number of 159010 parameters
Epoch: 0, Train Loss: 0.9922358669588328, Val Loss: 0.6142751978168005, Test Acc: 90.05%, 9.1
Epoch: 1, Train Loss: 0.46111484544585124, Val Loss: 0.4694672076007988, Test Acc: 90.8200000000001%, 9.0
Epoch: 2, Train Loss: 0.36240459147774046, Val Loss: 0.4909582217282887, Test Acc: 90.62%, 9.0
Epoch: 3, Train Loss: 0.3311268923818455, Val Loss: 0.43367936377283894, Test Acc: 90.05%, 9.1
```


Outline

- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

Running in scheduler (SLURM)

Single GPU in Single Node

```
#!/bin/bash
#
#SBATCH --gres=gpu:t4:1
#SBATCH --cpus-per-task=3
#SBATCH --mem=8000M
#SBATCH --time=00:30:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out

module load StdEnv/2020
module load python
module load scipy-stack

source ~/TF/bin/activate
cd /home/$USER/MNIST_tf
python /home/$USER/MNIST_tf/tfmnist.py
```

F TensorFlow

Multi-GPUs in Single Node

```
#!/bin/bash
#
#SBATCH --nodes=1
#SBATCH --tasks-per-node=8
#SBATCH --gres=gpu:v100:8
#SBATCH --cpus-per-task=3
#SBATCH --mem=20G
#SBATCH --time=00:30:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out

module load StdEnv/2020
module load python
module load scipy-stack

source ~/TF/bin/activate
cd /home/$USER/MNIST_tf
srun python /home/$USER/MNIST_tf/tfmnist.py
```

Note: CPU to GPU ratio recommended to have less than 3.5

Running in scheduler (SLURM)

Single GPU in Single Node

```
#!/bin/bash
#
#SBATCH --gres=gpu:t4:1
#SBATCH --cpus-per-task=6
#SBATCH --mem=8000M
#SBATCH --time=00:30:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out
module load StdEnv/2020
module load python
module load scipy-stack
source ~/PT/bin/activate
cd /home/$USER/MNIST
python /home/$USER/MNIST/mnist.py
```

Multi-GPUs in Single Node

```
#!/bin/bash
#
#SBATCH --nodes=1
#SBATCH --tasks-per-node=8
#SBATCH --gres=gpu:v100:8
#SBATCH --cpus-per-task=3
#SBATCH --mem=20G
#SBATCH --time=00:30:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out

module load StdEnv/2020
module load python
module load scipy-stack

source ~/PT/bin/activate
cd /home/$USER/MNIST
srun python /home/$USER/MNIST/mnist.py
```

Note: CPU to GPU ratio recommended to have less than 3.5

S PyTorch

Outline

- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

Distributed deep learning training framework

Installation

Environment

```
[isaac@gra-login2 ~]$ cat .bashrc
export HOROVOD_CUDA_HOME=$CUDA_HOME
export HOROVOD_NCCL_HOME=$EBROOTNCCL
export HOROVOD_GPU_BROADCAST=NCCL
export HOROVOD_GPU_ALLREDUCE=NCCL
export HOROVOD_GPU_OPERATIONS=NCCL
export HOROVOD_WITH_PYTORCH=1
export HOROVOD_WITH_TENSORFLOW=1
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$EBROOTNCCL
export PATH=$PATH:$EBROOTNCCL/include:$EBROOTNCCL/lib
```


TensorFlow + HOROVOD

Multiple GPUs in Multi-nodes

HOROVOD

F TensorFlow

TensorFlow + HOROVOD

```
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --gres=gpu:t4:2
#SBATCH --tasks-per-node=2
#SBATCH --mem=10G
#SBATCH --cpus-per-task=3
#SBATCH --time=00:10:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out
module load StdEnv/2020
module load python scipy-stack
module load cuda cudnn
module load nccl
source ~/.bashrc
source ~/TF/bin/activate
cd /home/$USER/MNIST_tf
```

```
TensorFlow
```

```
2021-02-08 13:13:47.495254: I tensorflow/stream_executor/platform/default/dso_loader.cc:48] Successfully opened dynamic
library libcuda.so.1
2021-02-08 13:13:47.595232: I tensorflow/core/common runtime/apu/apu device.cc:1716] Found device 0 with properties:
pciBusID: 0000:87:00.0 name: Tesla T4 computeCapability: 7.5
ccreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2021-02-08 13:13:47.596749: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:d8:00.0 name: Tesla T4 computeCapability: 7.5
ccreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2021-02-08 13:13:47.845989: I tensorflow/core/common runtime/gpu/gpu device.cc:1858] Adding visible gpu devices: 0, 1
ccreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2021-02-08 13:13:51.691695: I tensorflow/core/common runtime/apu/apu device.cc:1716] Found device 0 with properties:
pciBusID: 0000:87:00.0 name: Tesla T4 computeCapability: 7.5
coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2021-02-08 13:13:51.692993: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1716] Found device 1 with properties:
pciBusID: 0000:d8:00.0 name: Tesla T4 computeCapability: 7.5
ccreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.75GiB deviceMemoryBandwidth: 298.08GiB/s
2021-02-08 13:13:52.155969: I tensorflow/core/common runtime/gpu/gpu device.cc:1858] Adding visible gpu devices: 0, 1
hostname = gra1155
Num GPUs Available: 2
Step #0 Loss: 2.329757
hostname = gra1154
Num GPUs Available: 2
Step #0 Loss: 2.305397
```

srun python /home/\$USER/MNIST_tf/mnisthor.py --log-dir distributed
--variable update horovod

PyTorch + DDP

Multiple GPUs in Multi-nodes

super(Net, self).__init__()

Distributed Data Parallel (DDP)

```
ngpus_per_node = torch.cuda.device_count()
print(ngpus_per_node)
rank = int(os.environ.get("SLURM_NODEID"))*ngpus_per_node \
        + int(os.environ.get("SLURM_LOCALID"))
print('From Rank: {}, ==> Initializing Process Group...'.format(rank))
\verb|dist.init_process_group(backend=args.dist_backend, init_method=args.init_method, \land \\
        world_size=args.world_size, rank=rank)
print("process group ready!")
print('From Rank: {}, ==> Making model..'.format(rank))
     class Net(nn.Module):
        def __init__(self):
                                                                                     compute | calcul
```

O PyTorch

canada canada

SHARCNET** GENERAL INTEREST SEMINAR

PyTorch + DDP

```
# #SBATCH #SBA
```

```
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --gres=gpu:t4:2
#SBATCH --tasks-per-node=2
#SBATCH --mem=15G
#SBATCH --cpus-per-task=3
#SBATCH --time=00:30:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out
module load StdEnv/2020
module load python
module load scipy-stack
source ~/PT/bin/activate
cd /home/$USER/MNIST
export MASTER_ADDR=$(hostname)
echo "r$SLURM NODEID master: $MASTER ADDR"
echo "r$SLURM_NODEID Launching python script"
```

```
r0 master: gra1181
r0 Launching python script
Starting...
From Rank: 0, ==> Initializing Process Group...
process group ready!
From Rank: 0, ==> Making model..
From Rank: 0, ==> Preparing data..
From Rank: 0, Training time 0:00:00.615626
Starting...
From Rank: 2, ==> Initializing Process Group...
process group ready!
From Rank: 2, ==> Making model..
From Rank: 2, ==> Preparing data..
From Rank: 2, Training time 0:00:03.529344
Starting...
From Rank: 3, ==> Initializing Process Group...
process group ready!
From Rank: 3, ==> Making model..
From Rank: 3, ==> Preparing data..
Starting...
From Rank: 1, ==> Initializing Process Group...
process group ready!
From Rank: 1, ==> Making model..
From Rank: 1, ==> Preparing data..
From Rank: 1, Training time 0:00:00.246557
```

srun python /home/\$USER/MNIST/mnistddp.py --init_method tcp://\$MASTER_ADDR:3456
--world_size \$SLURM_NTASKS

PyTorch + PyTorch Lighting

Multiple GPUs in Multi-nodes

Note: pytorch-lightning is currently not available in wheels. Please install it manually by 'pip install pytorch-lightning'

PyTorch Lightning

```
import pytorch_lightning as pl
```

```
class Net(pl.LightningModule):

    def __init__(self):
        super(Net, self).__init__()

        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
```

O PyTorch

PyTorch + PyTorch Lighting

```
#!/bin/bash
Multi-GPU in Multi-Node
        #SBATCH --nodes=2
        #SBATCH --gres=gpu:t4:2
        #SBATCH --tasks-per-node=2
        #SBATCH --mem=15G
        #SBATCH --cpus-per-task=3
        #SBATCH --time=00:10:00
        #SBATCH --account=def-isaac
        #SBATCH --output=slurm.%x.%j.out
        module load StdEnv/2020
        module load python
        module load scipy-stack
        source ~/PT/bin/activate
        cd /home/$USER/MNIST
        srun pvthon /home/$USER/MNIST/mnistpl.pv
```

```
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Multi-processing is handled by Slurm.
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Multi-processing is handled by Slurm.
LOCAL_RANK: 1 - CUDA_VISIBLE_DEVICES: [0,1]
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Multi-processing is handled by Slurm.
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0,1]
GPU available: True, used: True
TPU available: None, using: 0 TPU cores
Multi-processing is handled by Slurm.
LOCAL RANK: 1 - CUDA VISIBLE DEVICES: [0,1]
initializing ddp: GLOBAL_RANK: 0, MEMBER: 1/4
initializing ddp: GLOBAL_RANK: 1, MEMBER: 2/4
initializing ddp: GLOBAL_RANK: 2, MEMBER: 3/4
initializing ddp: GLOBAL_RANK: 3, MEMBER: 4/4
```


PyTorch + HOROVOD

Multiple GPUs in Multi-nodes

Note: You need to install horovod in your virtual environment 'pip install – no-index horovod'

Horovod

```
import argparse
import torch.multiprocessing as mp
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
import torch.utils.data.distributed
import horovod.torch as hvd
if __name__ == '__main__':
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    # Horovod: initialize library.
    hvd.init()
    torch.manual_seed(args.seed)
    if args.cuda:
        # Horovod: pin GPU to local rank.
        torch.cuda.set_device(hvd.local_rank())
        torch.cuda.manual_seed(args.seed)
```

O PyTorch

Multi-GPU in Multi-Node

SHARCNET" GENERAL INTEREST SEMINAR

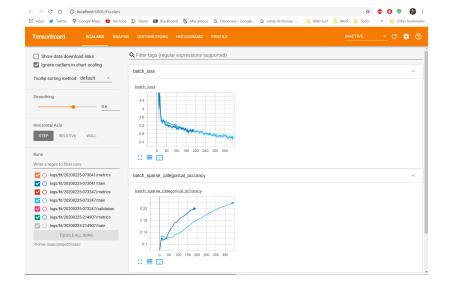
PyTorch + HOROVOD

```
#!/bin/bash
#SBATCH --nodes=2
#SBATCH --gres=gpu:t4:2
#SBATCH --tasks-per-node=2
#SBATCH --mem=10G
#SBATCH --cpus-per-task=3
#SBATCH --time=00:10:00
#SBATCH --account=def-isaac
#SBATCH --output=slurm.%x.%j.out
module load StdEnv/2020
module load python
module load scipy-stack
module load cuda cudnn
module load nccl
source ~/.bashrc
source ~/PT/bin/activate
cd /home/$USER/MNIST
srun python /home/$USER/MNIST/mnisthor.py
```

```
GPU is running
hostname = gra1154
how many gpus in gra1154: 2
which gpu is running: Tesla T4
Test set: Average loss: 0.2145, Accuracy: 93.66%
GPU is running
hostname = gra1154
how many gpus in gra1154: 2
which gpu is running: Tesla T4
Test set: Average loss: 0.2145, Accuracy: 93.66%
GPU is running
hostname = gra1155
how many gpus in gra1155: 2
 tensor = torch.tensor(val)
Test set: Average loss: 0.2145, Accuracy: 93.66%
GPU is running
hostname = qra1155
how many gpus in gra1155: 2
which gpu is running: Tesla T4
Test set: Average loss: 0.2145, Accuracy: 93.66%
```


Outline

- DNN & Parallelism (Data vs Model)
- TensorFlow vs PyTorch
- GPUs and Virtual Environment
- Running interactively
- Running in SLURM (Multi-GPUs in single node)
- Running in SLURM (Multi-GPUs in multi-nodes)
- Tensorboard

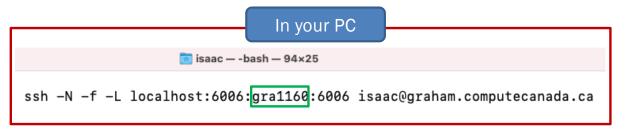


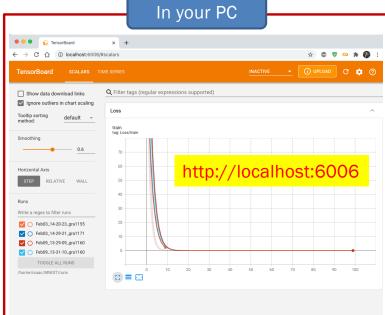
Tensorboard + PyTorch

[isaac@gra-login2 MNIST]\$ source ~/PT/bin/activate
(PT) [isaac@gra-login2 MNIST]\$ avail wheels "*tensor*"

name	_	build	python	arch
tensorboard tensorboard_plugin_wit tensorboardX tensorflow_addons tensorflow_cpu tensorflow_estimator tensorflow_federated tensorflow_gpu tensorflow_model_optimization tensorflow_privacy	2.3.0 1.7.0 2.1 0.11.2 2.3.0 2.3.0 0.17.0 2.3.0 0.5.0 0.5.1 0.11.0 1.5.1 2.3.0		python py3 py3 py2.py3 cp38 cp38 py2.py3 py2.py3 cp38 py2.py3 py3 py2.py3 py3 py3 py3 py3 cp38	generic generic generic generic generic generic generic generic generic generic generic
[isaac@gra-login2 MNIST]\$ [isaac@gra-login2 MNIST]\$ source (PT) [isaac@gra-login2 MNIST]\$ name version build	ce ~/PT/bin/ avail_wheel python	ls tensori arch	board	
(PT) [isaac@gra-login2 MNIST]\$		-	dex tensor	board

Test code


```
import torch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()
x = torch.arange(-5, 5, 0.1).view(-1, 1)
y = -5 * x + 0.1 * torch.randn(x.size())
model = torch.nn.Linear(1, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr = 0.1)
def train model(iter):
    for epoch in range(iter):
        y1 = model(x)
        loss = criterion(y1, y)
        writer.add_scalar("Loss/train", loss, epoch)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
train_model(100)
writer.flush()
writer.close()
```



How to use?

In Graham (Interactive or Slurm) [[isaac@gra-login2 MNIST]\$ salloc --time=00:15:00 --ntasks=1 --cpus-per-task=3 --mem=8000M --gres=gpu:t4:1 --account=def-isaac salloc: Pending job allocation 44485182 salloc: job 44485182 queued and waiting for resources salloc: job 44485182 has been allocated resources salloc: Granted job allocation 44485182 salloc: Waiting for resource configuration salloc: Nodes gra1160 are ready for job [[isaac@gra1160 MNIST]\$ source ~/PT/bin/activate (PT) [isaac@gra1160 MNIST]\$ tensorboard --logdir=/home/\$USER/MNIST/runs --host 0.0.0.0 & [1] 175434 (PT) [isaac@gra1160 MNIST]\$ python simple.py

Logs

```
(PT) [isaac@gra1160 MNIST]$ ls -lrt runs/
total 16
drwxr-x--- 2 isaac isaac 3 Feb 3 14:20 Feb03_14-20-23_gra1155
drwxr-x--- 2 isaac isaac 3 Feb 3 14:29 Feb03_14-29-21_gra1171
drwxr-x--- 2 isaac isaac 3 Feb 9 13:29 Feb09_13-29-09_gra1160
drwxr-x--- 2 isaac isaac 3 Feb 9 13:31 Feb09_13-31-10_gra1160
(PT) [isaac@gra1160 MNIST]$ ls -lrt runs/Feb09_13-31-10_gra1160/
total 12
-rw-r---- 1 isaac isaac 4838 Feb 9 13:31 events.out.tfevents.1612895470.gra1160.175456.0
```


Thanks!

Q & A

You can find all testing files in this seminar here:

https://sharcnet.ca/~isaac/GIS2020Feb10.tar.gz

