Survival guide for the upcoming GPU upgrades

(more total power, but fewer GPUs)

Sergey Mashchenko (SHARCNET, @McMaster University)

November 20, 2024

Outline

- What problem are we trying to solve?
- Possible solutions
	- CUDA streams
	- Multi-Instance GPU (MIG)
	- Multi-Process Service (MPS)
- Picking the right solution
- Live demo

What problem are we trying to solve?

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 3 / 41

Amdahl's Law

• Amdahl's Law states that potential program speedup is defined by the fraction of code (P) that can be parallelized:

where N is the number of processors.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 4 / 41

Amdahl's Law visualized

• It soon becomes obvious that there are limits to the scalability of parallelism. For example, at $P = .50, .90$ and .99 (50%, 90% and 99% of the code is parallelizable):

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 5 / 41

How to waste GPU cycles?

- From the Amdahl's law, moving a computational code (solving a *fixed size problem*) from an older smaller GPU to a modern larger GPU might result in wasting a significant fraction of the GPU cycles.
	- This happens **if the problem size is too small** to saturate a modern massively parallel GPU.
	- One possible solution is to increase the size of the problem (use higher resolution in CFD, larger batch size in DL etc.).
		- According to the Gustafson's law, increasing the problem size while increasing the number of computing cores can result in a much better scaling.
	- This is often not the right solution.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 6 / 41

More ways to waste GPU cycles

- Another way to waste a significant fraction of a GPU cycles is when your code uses the GPU in short bursts.
	- During such bursts, the GPU may be used quite efficiently (if the problem size is large enough) – but not necessarily!
	- The problem arises from the fact that most of the time the GPU is idle.
	- The interval between bursts can be very short (milliseconds), but still have a dramatic impact on the code efficiency, if the burst time is much shorter than the interval time.

What problem are we trying to solve?

- In the national systems, we have a relatively small number of very powerful (and expensive!) GPUs.
	- As a result, we have a huge demand for GPUs much more so than for CPUs.
- To add an insult to injury, many (likely most) GPU jobs have low efficiency (effectively just using a fraction of a GPU).
- The solution to this would be some way of sharing a single GPU – either between the user's processes, or between different users.
- Fortunately NVIDIA provides a few ways to achieve this.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 8 / 41

Why now?

- The problem of underutilizing modern large GPUs will become much more pronounced when the national systems will undergo upgrades in the next 3-4 months.
- During the upgrades the oldest GPUs (P100, V100) will be removed, and the newer H100 GPUs will be installed instead.
	- Narval cluster will not be upgraded this time, so its 636 A100 GPUs will stay.
- After the upgrades, the combined compute power in GPUs will grow by a factor of 3.5x (from ~6000 RGU to ~21,000 RGU), but **the number of GPUs will actually go down** – from 3200 to 2100.
	- This will exacerbate the problem we already have with inefficient GPU jobs.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 9 / 41

Reference GPU Units (RGU)

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 10 / 41

GPUs in upgraded systems

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 11 / 41

Current GPU jobs efficiency (Narval)

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 12 / 41

Possible solutions

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 13 / 41

CUDA streams

- The oldest NVIDIA solution for sharing a GPU between unrelated tasks is CUDA streams.
	- It's been around since the first days of CUDA.
	- A CUDA stream is a queue of GPU facing commands (kernels, memcopy etc.), coming from **a single process**.
	- When more than one stream is defined in the user code, unrelated GPU operations (kernels, memcopy, ...) can run concurrently – if the resources permit.
	- The biggest drawback: this is limited to a single process.
		- If your process simply doesn't have enough of parallelism to saturate a modern GPU, streams are not useful.
	- Another drawback: this requires re-writing the code, which can be very time consuming, or even not possible (if you are using someone else's code).

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 14 / 41

Stream example

- Streams are often used to hide the high cost of moving the data between the CPU and the GPU.
- This approach is called "staged concurrent copy and execute".
	- In this approach, when dealing with **data parallel** processing, one single large data copy CPU->GPU followed by a large compute kernel is replaced by concurrent coping and computing in smaller segments, organized as two streams: copy stream, and execute stream.

MIG and MPS

- In this presentation, we will focus on two other methods of sharing a GPU which, unlike streams, do not require rewriting the code.
	- In fact, the code doesn't even need to be re-compiled!
- The first method is the **static** GPU fragmentation/virtualization framework called **MIG** (Multi-Instance GPU). Available since Ampere (e.g. A100).
- The second method is the **dynamic** sharing of a GPU by unrelated processes called **MPS** (used to be called Hyper-Q) – Multi-Process Service. Has been around much longer – since Kepler (e.g. K20).
- The two approaches have their Pro's and Con's, so your code might benefit the most from one or another (or both, or neither).

Introduction to MIG

- MIG is a technology that enables the partitioning of a single GPU into multiple, isolated environments, each with its own dedicated memory and resources.
	- This allows multiple applications to run concurrently on a single GPU, increasing overall utilization and efficiency.
	- MIG is particularly useful for applications that require a high degree of isolation and security, such as those in the financial or healthcare industries.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 17 / 41

MIG: some details

- We can segment the GPU into up to 7 physically discrete instances (for both A100 and H100).
	- Memory is split into 8 equal size segments.
	- Compute (SMs) is also split into 8 segments, but only 7 segments are available for MIGs.
	- This implies the MIG overhead in terms of computing power of \sim 10%.
- Each instance has dedicated memory and processing.
- This technology allows for an easy and safe sharing of a GPU between different jobs (and users).
- Only a limited set of compute+memory configurations ("MIG profiles") is available.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 18 / 41

Partitioning: A100

- On narval, currently only two profiles are available: **3g.20gb** and **4g.20gb**.
- To request one of these profiles, or a full sized A100, use one of the following sbatch arguments:

```
--gres=gpu:a100_3g.20gb:1
--gres=gpu:a100_4g.20gb:1
```
--gres=gpu:a100:1

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 19 / 41

Partitioning: H100

- We have not decided yet which profiles to make available on upgraded systems.
- It is likely that all the flavours will be provided: from 1g.10gb to 4g.40gb.

Introduction to MPS

- MPS is a technology that allows multiple processes to share a single GPU, but with a focus on maximizing performance and minimizing overhead.
	- Unlike MIG, MPS does not provide isolation between processes, but instead, it optimizes the allocation of GPU resources to achieve the best possible performance.
	- MPS is ideal for applications that require high-performance computing and can tolerate some level of resource sharing.
- In MPS, the GPU is **dynamically** shared between multiple (could be unrelated) processes. Examples:
	- A group of MPI ranks sharing a single GPU.
	- GPU farming (sharing a GPU between multiple instances of a code).
		- Used for Monte Carlo simulations, parameter sweeps etc.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 21 / 41

MPS: some details

To make use of the MPS feature, include the following lines in your job script:

echo quit | nvidia-cuda-mps-control export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log n vidia-cuda-mps-control -d \blacktriangleleft Kills the MPS daemon Launches the MPS daemon

- With MPS, the GPU can be shared between up to 48 processes.
- There is a memory overhead; for A100 it is $432MB +$ the execution code copy, for each process.
- MPS can be used with MIGs.

MPS for GPU farming

- To share a GPU between unrelated processes using MPS, follow these steps:
	- In your job script, request one GPU and multiple CPU cores (one or more core for each process), e.g. $$$ salloc --time=0-03:00 -c 16 -gres=gpu:a100:1 -A def-myaccount --mem=64G
	- Launch the MPS daemon inside the job script (previous slide)
	- You can launch multiple instances of your code (sharing a single GPU) inside the job script using the **for** loop, e.g.

```
for ((i=0; i\leq N; i++) do
   ./my_GPU_code &>$i.out &
   done
wait
```
November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 23 / 41

MPS: limiting compute resources per process

\$ setenv CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

- Environment variable: configures maximum fraction of a GPU available to an MPS-attached process
- Guarantees a process will use at most percentage execution resources (SMs)
- Over-provisioning is permitted: sum across all MPS processes may exceed 100%
- Provisions only execution resources (SMs) does not provision memory bandwidth or capacity

MPS: limiting memory per process

- What if some MPS clients try to monopolize all the available GPU memory?
- One can prevent that via a global or per-client memory limits.
- Default Global Limit

\$ echo set_default_device_pinned_mem_limit 0 2G | nvidia-cuda-mps-control

• Per-Client Limit

\$ export CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="0=1G,1=2G"

Side by side comparison

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 26 / 41

Picking the right solution

Does your code need this?

- Most likely **YES**.
	- Majority of GPU jobs running on our clusters cannot properly utilize whole GPUs, and should be subjected to this analysis.
- GPU utilization depends not only on the code, but also very strongly on the **problem size** (Amdahl's law!).
	- So even if you had good GPU utilization with your code before, when you change your problem, you need to re-evaluate the code performance.
- One exception: you cannot improve the GPU utilization using MPS and/or MIG technologies when your code needs all (or almost all) of the GPU memory
	- 40GB for A100, 80GB for H100.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 28 / 41

Step 1: measure the GPU utilization

- You should start by running some test jobs, then analyzing the overall GPU utilization.
- A convenient way to do it is by accessing the "Jobs stats" tab of a cluster portal.
	- Only narval for now, but other clusters will be added as well, after the upgrades.
	- Search for the cluster page on our documentation site (e.g. <https://docs.alliancecan.ca/wiki/Narval>), then click on the Portal link at the top.
- If your GPU job
	- requires <50% of the GPU memory (<20GB on A100, <40GB on H100), and
	- has a GPU utilization <75%,

it has to be used with either MPS, or MIG, or both.

Optional: code profiling

- You may want to know where are the inefficiencies inside the code.
	- E.g., you want to know whether the inefficiency is due to the code being bursty, due to a small problem size, or perhaps both.
- The best profiler for NVIDIA GPUs is Nsight.
	- It is already installed on our systems (part of the "cuda" module).
	- It is a GUI application, so you need to use VNC or Jupyterhub to run it on the cluster.
		- Check the Jupyterhub page for details: <https://docs.alliancecan.ca/wiki/JupyterHub>
	- It comes in two packages:
		- Nsight Systems (nsys-ui): high level code profiling
		- Nsight Compute (ncu-ui): low level, line-by-line code profiling (individual kernels)
	- Check out my webinar "Profiling GPU codes with Nsight" on SHARCNET youtube channel: <http://youtube.sharcnet.ca/>

Bursty code example

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 31 / 41

Small problem size example

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 32 / 41

Step 2: first, consider MPS

- MPS is using dynamic work load balancing (vs. static fragmentation under MIG), so can result in better GPU utilization – **if the following condition is met**:
	- you either need to run multiple instances of your code (job farming), or
	- your code is an MPI code with GPU acceleration.
		- In other words, if you just need to run one GPU job which doesn't use MPI, MPS is the wrong tool.
		- This limitation is due to the fact that MPS cannot be used to (safely) share a GPU between different users.
- Double check your job may be already using MPS.
	- pytorch-gpu-mps.sh is currently the only example on our documentation site (on PyTorch page: <https://docs.alliancecan.ca/wiki/PyTorch>).

MPS: how many clients per GPU?

- If your job(s) qualify for MPS, run a few more test jobs, using a different number of processes (or MPI ranks) per GPU under MPS control.
	- You can use any number **between 2 and 48**.
	- The upper limit will most likely be set by the memory available on the GPU (or CPU).
		- Once the number of clients is too high, your code will crash as it will run out of memory.
		- Memory crash on a GPU will not result in a classical SEGFAULT error.
		- Instead, test for the correctness of results. If the code has a GPU debugging option, you may want to turn it on, for better error catching.
	- Another factor to consider is the CPU-core to GPU ratio, which ranges from 12 (Narval, Graham2, Fir) to 16 (Rorqual) to 24 (Trillium).
	- Pick the smallest number of clients which will make the **GPU utilization 75% or better**.

Step 3: next, consider MIG

- If MPS doesn't work for you, test your job performance using different MIG profiles.
	- Use only the profiles which have enough of memory to run your job.
		- If not sure, try profiles with different memory sizes, and pick the profile with the smallest memory size which can still run your job without crashing.
	- On narval (A100 GPUs) we currently only have two profiles: 3g.20gb and 4g.20gb .
	- On upgraded clusters (H100 GPUs) we will most likely have all possible sizes: 1g, 2g, 3g, 4g.
	- When testing an MPI+GPU code, use equal size MIGs for your job.
- Pick the profile which gives you **>75% GPU utilization**.

What about MIG + MPS?

- It is perfectly fine to use MPS on a MIG.
	- The maximum number of MPS clients is reduced accordingly.
		- So instead of 48, you will get 24 for 4g, 18 for 3g, 12 for 2g, and 6 for 1g.
- Use MPS on a MIG under the following circumstances:
	- Your code gets the best GPU utilization (>75%) with MPS (and does worse with pure MIG), but
		- either you do not have enough of processes (MPI ranks) per whole GPU to get to the efficient regime,
		- or MIGs are much more available (resulting in significantly shorter queue wait time) than whole GPUs.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 36 / 41

Step 4: switch to CPUs

- If everything else fails, you should test the CPU-only version of your code.
	- Large memory, low GPU utilization codes are the primary candidates.
- Chances are, you will get comparable runtime, and shorter queue wait time, if you do the transition.

Live Demo

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 38 / 41

Main takeaways

- There are lots of inefficient GPU jobs on our clusters. (Your job is likely one of them!)
	- This results in long queue wait times.
- The situation will get much worse after the upcoming cluster upgrades. (Despite the increased combined GPU compute power.)
- The two Nvidia technologies to share a GPU MPS and MIG can rectify the situation, and are very easy to use.

References

- **Alliance Infrastructure Renewal page:** https://docs.alliancecan.ca/wiki/Infrastructure renewal
- **MIG User Guide (Nvidia):** <https://docs.nvidia.com/datacenter/tesla/mig-user-guide/>
- **Multi-Process Service (Nvidia):** <https://docs.nvidia.com/deploy/mps/index.html>
- **Optimizing GPU Utilization: Understanding MIG and MPS*:** <https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/>
- **Multi-Instance GPU (Alliance page):** https://docs.alliancecan.ca/wiki/Multi-Instance_GPU
- **Hyper-Q / MPS (Alliance page):** https://docs.alliancecan.ca/wiki/Hyper-Q / MPS

Questions?

You can contact me directly (syam@sharcnet.ca)

or send an email to help@sharcnet.ca

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 41 / 41