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Outline

● What problem are we trying to solve?
● Possible solutions

– CUDA streams
– Multi-Instance GPU (MIG)
– Multi-Process Service (MPS)
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What problem 
are we trying to solve?



November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 4 / 41

Amdahl's Law

• Amdahl's Law states that potential program speedup is 
defined by the fraction of code (P) that can be parallelized: 

                                     1      
speedup   =   —————————                 

                   P
            —— + 1-P                 
                   N
                             

where N is the number of processors. 
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Amdahl's Law visualized

• It soon becomes obvious that there are
limits to the scalability of parallelism. For
example, at P = .50, .90 and .99 (50%,
90% and 99% of the code is
parallelizable): 

                          speedup         
                   ——————————————————  
     N        P = .50      P = .90     P = .99  
   ————   —————    ————    —————  
     10         1.82         5.26        9.17  
     100        1.98         9.17       50.25    
     1000       1.99         9.91       90.99   
     10000      1.99         9.91       99.02
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How to waste GPU cycles?

● From the Amdahl’s law, moving a computational code (solving a fixed 
size problem) from an older smaller GPU to a modern larger GPU 
might result in wasting a significant fraction of the GPU cycles.
– This happens if the problem size is too small to saturate a modern 

massively parallel GPU.
– One possible solution is to increase the size of the problem (use 

higher resolution in CFD, larger batch size in DL etc.). 
● According to the Gustafson's law, increasing the problem size while 

increasing the number of computing cores can result in a much better 
scaling.

– This is often not the right solution.
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More ways to waste GPU cycles

● Another way to waste a significant fraction of a GPU cycles is 
when your code uses the GPU in short bursts.
– During such bursts, the GPU may be used quite efficiently (if the 

problem size is large enough) – but not necessarily!
– The problem arises from the fact that most of the time the GPU is 

idle.
– The interval between bursts can be very short (milliseconds), but still 

have a dramatic impact on the code efficiency, if the burst time is 
much shorter than the interval time.



November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 8 / 41

What problem are we trying to solve?

● In the national systems, we have a relatively small number of 
very powerful (and expensive!) GPUs. 
– As a result, we have a huge demand for GPUs – much more so than 

for CPUs.
● To add an insult to injury, many (likely most) GPU jobs have low 

efficiency (effectively just using a fraction of a GPU).
● The solution to this would be some way of sharing a single GPU 

– either between the user’s processes, or between different 
users.

● Fortunately NVIDIA provides a few ways to achieve this.
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● The problem of underutilizing modern large GPUs will become much 
more pronounced when the national systems will undergo upgrades 
in the next 3-4 months.

● During the upgrades the oldest GPUs (P100, V100) will be removed, 
and the newer H100 GPUs will be installed instead.
– Narval cluster will not be upgraded this time, so its 636 A100 GPUs will stay.

● After the upgrades, the combined compute power in GPUs will grow 
by a factor of 3.5x (from ~6000 RGU to ~21,000 RGU), but the 
number of GPUs will actually go down – from 3200 to 2100.
– This will exacerbate the problem we already have with inefficient GPU jobs.

Why now?
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Reference GPU Units (RGU)
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GPUs in upgraded systems
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Current GPU jobs efficiency (Narval)
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Possible solutions
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CUDA streams

● The oldest NVIDIA solution for sharing a GPU between unrelated tasks is 
CUDA streams.
– It's been around since the first days of CUDA.

– A CUDA stream is a queue of GPU facing commands (kernels, memcopy etc.), coming from 
a single process.

– When more than one stream is defined in the user code, unrelated GPU operations 
(kernels, memcopy, ...) can run concurrently – if the resources permit.

– The biggest drawback: this is limited to a single process.
● If your process simply doesn't have enough of parallelism to saturate a modern GPU, streams are 

not useful.

– Another drawback: this requires re-writing the code, which can be very time consuming, or 
even not possible (if you are using someone else's code).
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Stream example

● Streams are often used to hide the high 
cost of moving the data between the 
CPU and the GPU.

● This approach is called “staged 
concurrent copy and execute”.

– In this approach, when dealing with 
data parallel processing, one 
single large data copy CPU->GPU 
followed by a large compute kernel 
is replaced by concurrent coping 
and computing in smaller segments, 
organized as two streams: copy 
stream, and execute stream.
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● In this presentation, we will focus on two other methods of sharing a GPU 
which, unlike streams, do not require rewriting the code.

– In fact, the code doesn't even need to be re-compiled!
● The first method is the static GPU fragmentation/virtualization framework 

called MIG (Multi-Instance GPU). Available since Ampere (e.g. A100).

● The second method is the dynamic sharing of a GPU by unrelated 
processes called MPS (used to be called Hyper-Q) – Multi-Process Service. 
Has been around much longer – since Kepler (e.g. K20).

● The two approaches have their Pro's and Con's, so your code might benefit 
the most from one or another (or both, or neither).

MIG and MPS
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Introduction to MIG

● MIG is a technology that enables the partitioning of a single GPU into multiple, isolated 
environments, each with its own dedicated memory and resources. 

● This allows multiple applications to run concurrently on a single GPU, increasing overall 
utilization and efficiency. 

● MIG is particularly useful for applications that require a high degree of isolation and 
security, such as those in the financial or healthcare industries.
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MIG: some details

● We can segment the GPU into up to 7 physically discrete instances (for both 
A100 and H100).
– Memory is split into 8 equal size segments.

– Compute (SMs) is also split into 8 segments, but only 7 segments are available for MIGs.

– This implies the MIG overhead in terms of computing power of ~10%.

● Each instance has dedicated memory and processing.

● This technology allows for an easy and safe sharing of a GPU between 
different jobs (and users).

● Only a limited set of compute+memory configurations (“MIG profiles”) is 
available.



November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 19 / 41

Partitioning: A100

● On narval, currently only two 
profiles are available: 3g.20gb 
and 4g.20gb.

● To request one of these 
profiles, or a full sized A100, 
use one of the following sbatch 
arguments:

--gres=gpu:a100_3g.20gb:1
--gres=gpu:a100_4g.20gb:1
--gres=gpu:a100:1
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Partitioning: H100

● We have not decided yet 
which profiles to make 
available on upgraded 
systems.

● It is likely that all the flavours 
will be provided: from 1g.10gb 
to 4g.40gb.
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Introduction to MPS

● MPS is a technology that allows multiple processes to share 
a single GPU, but with a focus on maximizing performance 
and minimizing overhead. 

● Unlike MIG, MPS does not provide isolation between processes, but 
instead, it optimizes the allocation of GPU resources to achieve the best 
possible performance. 

● MPS is ideal for applications that require high-performance computing 
and can tolerate some level of resource sharing.

● In MPS, the GPU is dynamically shared between multiple 
(could be unrelated) processes. Examples:

– A group of MPI ranks sharing a single GPU.

– GPU farming (sharing a GPU between multiple instances of a 
code).

● Used for Monte Carlo simulations, parameter sweeps etc.
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● To make use of the MPS feature, include the following lines in your job 
script:

echo quit | nvidia-cuda-mps-control
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
nvidia-cuda-mps-control -d

● With MPS, the GPU can be shared between up to 48 processes.
● There is a memory overhead; for A100 it is 432MB + the execution code 

copy, for each process.
● MPS can be used with MIGs.

MPS: some details

Kills the MPS daemon

Launches the MPS daemon
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● To share a GPU between unrelated processes using MPS, follow these steps:
– In your job script, request one GPU and multiple CPU cores (one or more core for each 

process), e.g.
$ salloc --time=0-03:00 -c 16 –gres=gpu:a100:1 -A def-myaccount 
--mem=64G

– Launch the MPS daemon inside the job script (previous slide)

– You can launch multiple instances of your code (sharing a single GPU) inside the job script 
using the for loop, e.g.

for ((i=0; i<-N; i+-))
  do
  ./my_GPU_code  &>$i.out  &
  done
wait

MPS for GPU farming
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MPS: limiting compute resources per 
process

$ setenv CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available 
to an MPS-attached process

• Guarantees a process will use at most percentage execution resources 
(SMs)

• Over-provisioning is permitted: sum across all MPS processes may 
exceed 100%

• Provisions only execution resources (SMs) – does not provision 
memory bandwidth or capacity
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MPS: limiting memory per process

● What if some MPS clients try to monopolize all the available 
GPU memory?

● One can prevent that via a global or per-client memory limits.
● Default Global Limit

$ echo set_default_device_pinned_mem_limit 0 2G | 
nvidia-cuda-mps-control

● Per-Client Limit

$ export CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="0=1G,1=2G”
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Side by side comparison
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Picking the right solution
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Does your code need this?

● Most likely YES.
– Majority of GPU jobs running on our clusters cannot properly utilize whole GPUs, 

and should be subjected to this analysis.

● GPU utilization depends not only on the code, but also very strongly on 
the problem size (Amdahl's law!).
– So even if you had good GPU utilization with your code before, when you change 

your problem, you need to re-evaluate the code performance.

● One exception: you cannot improve the GPU utilization using MPS 
and/or MIG technologies when your code needs all (or almost all) of the 
GPU memory
– 40GB for A100, 80GB for H100.
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Step 1: measure the GPU utilization

● You should start by running some test jobs, then analyzing the overall 
GPU utilization.

● A convenient way to do it is by accessing the “Jobs stats” tab of a cluster 
portal.
– Only narval for now, but other clusters will be added as well, after the upgrades.
– Search for the cluster page on our documentation site (e.g. 

https://docs.alliancecan.ca/wiki/Narval ), then click on the Portal link at the top.
● If your GPU job

– requires <50% of the GPU memory (<20GB on A100, <40GB on H100), and
– has a GPU utilization <75%,

it has to be used with either MPS, or MIG, or both.

https://docs.alliancecan.ca/wiki/Narval
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Optional: code profiling
● You may want to know where are the inefficiencies inside the code.

– E.g., you want to know whether the inefficiency is due to the code being 
bursty, due to a small problem size, or perhaps both.

● The best profiler for NVIDIA GPUs is Nsight.
– It is already installed on our systems (part of the “cuda” module).

– It is a GUI application, so you need to use VNC or Jupyterhub to run it on the 
cluster.

● Check the Jupyterhub page for details: https://docs.alliancecan.ca/wiki/JupyterHub 

– It comes in two packages:
● Nsight Systems (nsys-ui): high level code profiling
● Nsight Compute (ncu-ui): low level, line-by-line code profiling (individual kernels)

– Check out my webinar “Profiling GPU codes with Nsight” on SHARCNET 
youtube channel: http://youtube.sharcnet.ca/ 

https://docs.alliancecan.ca/wiki/JupyterHub
http://youtube.sharcnet.ca/
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Bursty code example
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Small problem size example
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Step 2: first, consider MPS
● MPS is using dynamic work load balancing (vs. static fragmentation 

under MIG), so can result in better GPU utilization – if the 
following condition is met:
– you either need to run multiple instances of your code (job farming), 

or
– your code is an MPI code with GPU acceleration.

● In other words, if you just need to run one GPU job which doesn't use 
MPI, MPS is the wrong tool.

● This limitation is due to the fact that MPS cannot be used to (safely) 
share a GPU between different users.

● Double check – your job may be already using MPS.
– pytorch-gpu-mps.sh is currently the only example on our 

documentation site (on PyTorch page: 
https://docs.alliancecan.ca/wiki/PyTorch ).

https://docs.alliancecan.ca/wiki/PyTorch
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● If your job(s) qualify for MPS, run a few more test jobs, using a different 
number of processes (or MPI ranks) per GPU under MPS control.

– You can use any number between 2 and 48.

– The upper limit will most likely be set by the memory available on the GPU 
(or CPU).

● Once the number of clients is too high, your code will crash as it will run out of 
memory.

● Memory crash on a GPU will not result in a classical SEGFAULT error.
● Instead, test for the correctness of results. If the code has a GPU debugging 

option, you may want to turn it on, for better error catching.

– Another factor to consider is the CPU-core to GPU ratio, which ranges from 
12 (Narval, Graham2, Fir) to 16 (Rorqual) to 24 (Trillium).

– Pick the smallest number of clients which will make the GPU utilization 
75% or better.

MPS: how many clients per GPU?
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Step 3: next, consider MIG

● If MPS doesn't work for you, test your job performance using different MIG 
profiles.
– Use only the profiles which have enough of memory to run your job.

● If not sure, try profiles with different memory sizes, and pick the profile 
with the smallest memory size which can still run your job without 
crashing.

– On narval (A100 GPUs) we currently only have two profiles: 3g.20gb and 
4g.20gb .

– On upgraded clusters (H100 GPUs) we will most likely have all possible 
sizes: 1g, 2g, 3g, 4g.

– When testing an MPI+GPU code, use equal size MIGs for your job.
● Pick the profile which gives you >75% GPU utilization.



November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 36 / 41

What about MIG + MPS?

● It is perfectly fine to use MPS on a MIG.
– The maximum number of MPS clients is reduced accordingly.

● So instead of 48, you will get 24 for 4g, 18 for 3g, 12 for 2g, and 6 for 1g.

● Use MPS on a MIG under the following circumstances:
– Your code gets the best GPU utilization (>75%) with MPS (and does 

worse with pure MIG), but
● either you do not have enough of processes (MPI ranks) per whole GPU to 

get to the efficient regime, 
● or MIGs are much more available (resulting in significantly shorter queue 

wait time) than whole GPUs.
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Step 4: switch to CPUs

● If everything else fails, you should test the CPU-only version of 
your code.
– Large memory, low GPU utilization codes are the primary 

candidates.
● Chances are, you will get comparable runtime, and shorter 

queue wait time, if you do the transition.
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Live Demo
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Main takeaways

● There are lots of inefficient GPU jobs on our clusters. (Your job 
is likely one of them!)
– This results in long queue wait times.

● The situation will get much worse after the upcoming cluster 
upgrades. (Despite the increased combined GPU compute 
power.)

● The two Nvidia technologies to share a GPU – MPS and MIG – 
can rectify the situation, and are very easy to use.
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References

● Alliance Infrastructure Renewal page: https://docs.alliancecan.ca/wiki/Infrastructure_renewal 

● MIG User Guide (Nvidia): https://docs.nvidia.com/datacenter/tesla/mig-user-guide/ 

● Multi-Process Service (Nvidia): https://docs.nvidia.com/deploy/mps/index.html 

● Optimizing GPU Utilization: Understanding MIG and MPS*: 
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/ 

● Multi-Instance GPU (Alliance page): https://docs.alliancecan.ca/wiki/Multi-Instance_GPU 

● Hyper-Q / MPS (Alliance page): https://docs.alliancecan.ca/wiki/Hyper-Q_/_MPS 

https://docs.alliancecan.ca/wiki/Infrastructure_renewal
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
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Questions?

You can contact me directly
(syam@sharcnet.ca) 

or send an email to
 help@sharcnet.ca
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