
Survival guide for the upcoming GPU
upgrades

(more total power, but fewer GPUs)

Sergey Mashchenko
(SHARCNET, @McMaster University)

November 20, 2024

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 2 / 41

Outline

● What problem are we trying to solve?
● Possible solutions

– CUDA streams
– Multi-Instance GPU (MIG)
– Multi-Process Service (MPS)

● Picking the right solution
● Live demo

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 3 / 41

What problem
are we trying to solve?

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 4 / 41

Amdahl's Law

• Amdahl's Law states that potential program speedup is
defined by the fraction of code (P) that can be parallelized:

 1
speedup = —————————

 P
 —— + 1-P
 N

where N is the number of processors.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 5 / 41

Amdahl's Law visualized

• It soon becomes obvious that there are
limits to the scalability of parallelism. For
example, at P = .50, .90 and .99 (50%,
90% and 99% of the code is
parallelizable):

 speedup
 ——————————————————
 N P = .50 P = .90 P = .99
 ———— ————— ———— —————
 10 1.82 5.26 9.17
 100 1.98 9.17 50.25
 1000 1.99 9.91 90.99
 10000 1.99 9.91 99.02

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 6 / 41

How to waste GPU cycles?

● From the Amdahl’s law, moving a computational code (solving a fixed
size problem) from an older smaller GPU to a modern larger GPU
might result in wasting a significant fraction of the GPU cycles.
– This happens if the problem size is too small to saturate a modern

massively parallel GPU.
– One possible solution is to increase the size of the problem (use

higher resolution in CFD, larger batch size in DL etc.).
● According to the Gustafson's law, increasing the problem size while

increasing the number of computing cores can result in a much better
scaling.

– This is often not the right solution.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 7 / 41

More ways to waste GPU cycles

● Another way to waste a significant fraction of a GPU cycles is
when your code uses the GPU in short bursts.
– During such bursts, the GPU may be used quite efficiently (if the

problem size is large enough) – but not necessarily!
– The problem arises from the fact that most of the time the GPU is

idle.
– The interval between bursts can be very short (milliseconds), but still

have a dramatic impact on the code efficiency, if the burst time is
much shorter than the interval time.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 8 / 41

What problem are we trying to solve?

● In the national systems, we have a relatively small number of
very powerful (and expensive!) GPUs.
– As a result, we have a huge demand for GPUs – much more so than

for CPUs.
● To add an insult to injury, many (likely most) GPU jobs have low

efficiency (effectively just using a fraction of a GPU).
● The solution to this would be some way of sharing a single GPU

– either between the user’s processes, or between different
users.

● Fortunately NVIDIA provides a few ways to achieve this.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 9 / 41

● The problem of underutilizing modern large GPUs will become much
more pronounced when the national systems will undergo upgrades
in the next 3-4 months.

● During the upgrades the oldest GPUs (P100, V100) will be removed,
and the newer H100 GPUs will be installed instead.
– Narval cluster will not be upgraded this time, so its 636 A100 GPUs will stay.

● After the upgrades, the combined compute power in GPUs will grow
by a factor of 3.5x (from ~6000 RGU to ~21,000 RGU), but the
number of GPUs will actually go down – from 3200 to 2100.
– This will exacerbate the problem we already have with inefficient GPU jobs.

Why now?

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 10 / 41

Reference GPU Units (RGU)

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 11 / 41

GPUs in upgraded systems

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 12 / 41

Current GPU jobs efficiency (Narval)

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 13 / 41

Possible solutions

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 14 / 41

CUDA streams

● The oldest NVIDIA solution for sharing a GPU between unrelated tasks is
CUDA streams.
– It's been around since the first days of CUDA.

– A CUDA stream is a queue of GPU facing commands (kernels, memcopy etc.), coming from
a single process.

– When more than one stream is defined in the user code, unrelated GPU operations
(kernels, memcopy, ...) can run concurrently – if the resources permit.

– The biggest drawback: this is limited to a single process.
● If your process simply doesn't have enough of parallelism to saturate a modern GPU, streams are

not useful.

– Another drawback: this requires re-writing the code, which can be very time consuming, or
even not possible (if you are using someone else's code).

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 15 / 41

Stream example

● Streams are often used to hide the high
cost of moving the data between the
CPU and the GPU.

● This approach is called “staged
concurrent copy and execute”.

– In this approach, when dealing with
data parallel processing, one
single large data copy CPU->GPU
followed by a large compute kernel
is replaced by concurrent coping
and computing in smaller segments,
organized as two streams: copy
stream, and execute stream.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 16 / 41

● In this presentation, we will focus on two other methods of sharing a GPU
which, unlike streams, do not require rewriting the code.

– In fact, the code doesn't even need to be re-compiled!
● The first method is the static GPU fragmentation/virtualization framework

called MIG (Multi-Instance GPU). Available since Ampere (e.g. A100).

● The second method is the dynamic sharing of a GPU by unrelated
processes called MPS (used to be called Hyper-Q) – Multi-Process Service.
Has been around much longer – since Kepler (e.g. K20).

● The two approaches have their Pro's and Con's, so your code might benefit
the most from one or another (or both, or neither).

MIG and MPS

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 17 / 41

Introduction to MIG

● MIG is a technology that enables the partitioning of a single GPU into multiple, isolated
environments, each with its own dedicated memory and resources.

● This allows multiple applications to run concurrently on a single GPU, increasing overall
utilization and efficiency.

● MIG is particularly useful for applications that require a high degree of isolation and
security, such as those in the financial or healthcare industries.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 18 / 41

MIG: some details

● We can segment the GPU into up to 7 physically discrete instances (for both
A100 and H100).
– Memory is split into 8 equal size segments.

– Compute (SMs) is also split into 8 segments, but only 7 segments are available for MIGs.

– This implies the MIG overhead in terms of computing power of ~10%.

● Each instance has dedicated memory and processing.

● This technology allows for an easy and safe sharing of a GPU between
different jobs (and users).

● Only a limited set of compute+memory configurations (“MIG profiles”) is
available.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 19 / 41

Partitioning: A100

● On narval, currently only two
profiles are available: 3g.20gb
and 4g.20gb.

● To request one of these
profiles, or a full sized A100,
use one of the following sbatch
arguments:

--gres=gpu:a100_3g.20gb:1
--gres=gpu:a100_4g.20gb:1
--gres=gpu:a100:1

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 20 / 41

Partitioning: H100

● We have not decided yet
which profiles to make
available on upgraded
systems.

● It is likely that all the flavours
will be provided: from 1g.10gb
to 4g.40gb.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 21 / 41

Introduction to MPS

● MPS is a technology that allows multiple processes to share
a single GPU, but with a focus on maximizing performance
and minimizing overhead.

● Unlike MIG, MPS does not provide isolation between processes, but
instead, it optimizes the allocation of GPU resources to achieve the best
possible performance.

● MPS is ideal for applications that require high-performance computing
and can tolerate some level of resource sharing.

● In MPS, the GPU is dynamically shared between multiple
(could be unrelated) processes. Examples:

– A group of MPI ranks sharing a single GPU.

– GPU farming (sharing a GPU between multiple instances of a
code).

● Used for Monte Carlo simulations, parameter sweeps etc.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 22 / 41

● To make use of the MPS feature, include the following lines in your job
script:

echo quit | nvidia-cuda-mps-control
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
nvidia-cuda-mps-control -d

● With MPS, the GPU can be shared between up to 48 processes.
● There is a memory overhead; for A100 it is 432MB + the execution code

copy, for each process.
● MPS can be used with MIGs.

MPS: some details

Kills the MPS daemon

Launches the MPS daemon

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 23 / 41

● To share a GPU between unrelated processes using MPS, follow these steps:
– In your job script, request one GPU and multiple CPU cores (one or more core for each

process), e.g.
$ salloc --time=0-03:00 -c 16 –gres=gpu:a100:1 -A def-myaccount
--mem=64G

– Launch the MPS daemon inside the job script (previous slide)

– You can launch multiple instances of your code (sharing a single GPU) inside the job script
using the for loop, e.g.

for ((i=0; i<-N; i+-))
 do
 ./my_GPU_code &>$i.out &
 done
wait

MPS for GPU farming

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 24 / 41

MPS: limiting compute resources per
process

$ setenv CUDA_MPS_ACTIVE_THREAD_PERCENTAGE=percentage

• Environment variable: configures maximum fraction of a GPU available
to an MPS-attached process

• Guarantees a process will use at most percentage execution resources
(SMs)

• Over-provisioning is permitted: sum across all MPS processes may
exceed 100%

• Provisions only execution resources (SMs) – does not provision
memory bandwidth or capacity

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 25 / 41

MPS: limiting memory per process

● What if some MPS clients try to monopolize all the available
GPU memory?

● One can prevent that via a global or per-client memory limits.
● Default Global Limit

$ echo set_default_device_pinned_mem_limit 0 2G |
nvidia-cuda-mps-control

● Per-Client Limit

$ export CUDA_MPS_PINNED_DEVICE_MEM_LIMIT="0=1G,1=2G”

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 26 / 41

Side by side comparison

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 27 / 41

Picking the right solution

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 28 / 41

Does your code need this?

● Most likely YES.
– Majority of GPU jobs running on our clusters cannot properly utilize whole GPUs,

and should be subjected to this analysis.

● GPU utilization depends not only on the code, but also very strongly on
the problem size (Amdahl's law!).
– So even if you had good GPU utilization with your code before, when you change

your problem, you need to re-evaluate the code performance.

● One exception: you cannot improve the GPU utilization using MPS
and/or MIG technologies when your code needs all (or almost all) of the
GPU memory
– 40GB for A100, 80GB for H100.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 29 / 41

Step 1: measure the GPU utilization

● You should start by running some test jobs, then analyzing the overall
GPU utilization.

● A convenient way to do it is by accessing the “Jobs stats” tab of a cluster
portal.
– Only narval for now, but other clusters will be added as well, after the upgrades.
– Search for the cluster page on our documentation site (e.g.

https://docs.alliancecan.ca/wiki/Narval), then click on the Portal link at the top.
● If your GPU job

– requires <50% of the GPU memory (<20GB on A100, <40GB on H100), and
– has a GPU utilization <75%,

it has to be used with either MPS, or MIG, or both.

https://docs.alliancecan.ca/wiki/Narval

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 30 / 41

Optional: code profiling
● You may want to know where are the inefficiencies inside the code.

– E.g., you want to know whether the inefficiency is due to the code being
bursty, due to a small problem size, or perhaps both.

● The best profiler for NVIDIA GPUs is Nsight.
– It is already installed on our systems (part of the “cuda” module).

– It is a GUI application, so you need to use VNC or Jupyterhub to run it on the
cluster.

● Check the Jupyterhub page for details: https://docs.alliancecan.ca/wiki/JupyterHub

– It comes in two packages:
● Nsight Systems (nsys-ui): high level code profiling
● Nsight Compute (ncu-ui): low level, line-by-line code profiling (individual kernels)

– Check out my webinar “Profiling GPU codes with Nsight” on SHARCNET
youtube channel: http://youtube.sharcnet.ca/

https://docs.alliancecan.ca/wiki/JupyterHub
http://youtube.sharcnet.ca/

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 31 / 41

Bursty code example

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 32 / 41

Small problem size example

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 33 / 41

Step 2: first, consider MPS
● MPS is using dynamic work load balancing (vs. static fragmentation

under MIG), so can result in better GPU utilization – if the
following condition is met:
– you either need to run multiple instances of your code (job farming),

or
– your code is an MPI code with GPU acceleration.

● In other words, if you just need to run one GPU job which doesn't use
MPI, MPS is the wrong tool.

● This limitation is due to the fact that MPS cannot be used to (safely)
share a GPU between different users.

● Double check – your job may be already using MPS.
– pytorch-gpu-mps.sh is currently the only example on our

documentation site (on PyTorch page:
https://docs.alliancecan.ca/wiki/PyTorch).

https://docs.alliancecan.ca/wiki/PyTorch

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 34 / 41

● If your job(s) qualify for MPS, run a few more test jobs, using a different
number of processes (or MPI ranks) per GPU under MPS control.

– You can use any number between 2 and 48.

– The upper limit will most likely be set by the memory available on the GPU
(or CPU).

● Once the number of clients is too high, your code will crash as it will run out of
memory.

● Memory crash on a GPU will not result in a classical SEGFAULT error.
● Instead, test for the correctness of results. If the code has a GPU debugging

option, you may want to turn it on, for better error catching.

– Another factor to consider is the CPU-core to GPU ratio, which ranges from
12 (Narval, Graham2, Fir) to 16 (Rorqual) to 24 (Trillium).

– Pick the smallest number of clients which will make the GPU utilization
75% or better.

MPS: how many clients per GPU?

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 35 / 41

Step 3: next, consider MIG

● If MPS doesn't work for you, test your job performance using different MIG
profiles.
– Use only the profiles which have enough of memory to run your job.

● If not sure, try profiles with different memory sizes, and pick the profile
with the smallest memory size which can still run your job without
crashing.

– On narval (A100 GPUs) we currently only have two profiles: 3g.20gb and
4g.20gb .

– On upgraded clusters (H100 GPUs) we will most likely have all possible
sizes: 1g, 2g, 3g, 4g.

– When testing an MPI+GPU code, use equal size MIGs for your job.
● Pick the profile which gives you >75% GPU utilization.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 36 / 41

What about MIG + MPS?

● It is perfectly fine to use MPS on a MIG.
– The maximum number of MPS clients is reduced accordingly.

● So instead of 48, you will get 24 for 4g, 18 for 3g, 12 for 2g, and 6 for 1g.

● Use MPS on a MIG under the following circumstances:
– Your code gets the best GPU utilization (>75%) with MPS (and does

worse with pure MIG), but
● either you do not have enough of processes (MPI ranks) per whole GPU to

get to the efficient regime,
● or MIGs are much more available (resulting in significantly shorter queue

wait time) than whole GPUs.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 37 / 41

Step 4: switch to CPUs

● If everything else fails, you should test the CPU-only version of
your code.
– Large memory, low GPU utilization codes are the primary

candidates.
● Chances are, you will get comparable runtime, and shorter

queue wait time, if you do the transition.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 38 / 41

Live Demo

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 39 / 41

Main takeaways

● There are lots of inefficient GPU jobs on our clusters. (Your job
is likely one of them!)
– This results in long queue wait times.

● The situation will get much worse after the upcoming cluster
upgrades. (Despite the increased combined GPU compute
power.)

● The two Nvidia technologies to share a GPU – MPS and MIG –
can rectify the situation, and are very easy to use.

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 40 / 41

References

● Alliance Infrastructure Renewal page: https://docs.alliancecan.ca/wiki/Infrastructure_renewal

● MIG User Guide (Nvidia): https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

● Multi-Process Service (Nvidia): https://docs.nvidia.com/deploy/mps/index.html

● Optimizing GPU Utilization: Understanding MIG and MPS*:
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/

● Multi-Instance GPU (Alliance page): https://docs.alliancecan.ca/wiki/Multi-Instance_GPU

● Hyper-Q / MPS (Alliance page): https://docs.alliancecan.ca/wiki/Hyper-Q_/_MPS

https://docs.alliancecan.ca/wiki/Infrastructure_renewal
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/mps/index.html
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41793/
https://docs.alliancecan.ca/wiki/Multi-Instance_GPU
https://docs.alliancecan.ca/wiki/Hyper-Q_/_MPS

November 20, 2024 "Survival guide for the upcoming GPU upgrades", by Sergey Mashchenko 41 / 41

Questions?

You can contact me directly
(syam@sharcnet.ca)

or send an email to
 help@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

