SSH for good, not evil

A little about the power - and the responsibility

A taste

Forget your password: publickey authentication
Files at your fingertips: sshfs

Reach the inaccessible: ProxyJump
Wormbholes: port forwarding

There must be 50 ways to copy your file

Kinda famous: publish a private key

But first...

e SSH, like SSL (the ‘s’ in https) is asymmetric encryption:
o One key can only encrypt: you publish that part
o The other key is private, and lets you decrypt

So if | know your Pubkey, | can send something that only you can read.

e The first thing we use PK for is to agree on symmetric keys, because the
math of PK is horrible and slow.

e But a side-effect of known public keys is mutual authentication. (Dirty secret:
browsers preload tons of pubkeys, otherwise you wouldn'’t be able to trust any
website and surfing from a cafe would be a total bummer!)

OK, again

e “Keypair”’: public part and private part.

e Everything depends on keeping privates private.

e Basic technique is used by HTTPS as well as SSH.

e Provides both encryption (non-snoopability) and mutual authentication (no
imposters).

| can’t repeat this enough: still have to keep your private key private.

SSH, how to get it

SSH is a classic Unix thing: a versatile building block that has a million uses - but
it's also not very prescriptive: it doesn'’t tell you want to use it for.

e Linux: OpenSSH ubiquitous
e MacOS: OpenSSH built-in but not obvious

e \Windows: used to be somewhat hostile (PuTTY, ssh.com, etc)
o You should probably just install MobaXterm
o OpenSSH included with very recent Windows 10 (!!)

Yes, I'm assuming commandline

Remember: SSH is a building block, a tool, not really an application.
Commandline gets you all the basics you need: connect to a cluster, submit jobs.
Commandline builds character - all the greats used commandlines!

Yes, there’s more than commandline...

Still basic Unix: windows and GUI

Unix/Linux GUI applications use X.

X does GUI over a network connection.

SSH can “tunnel” X from a remote Linux machine to your device.
It's not great, but it works.

There are tweaks: X compression, VNC, etc

It's still just an SSH tunnel. Wait, what’s an SSH tunnel!?!

SSH is just a tunneling machine

When you “connect” to a remote server, what actually happens?

e You login
e You see text and type stuff
e You logout or get disconnected

Couple bits more detalil

There’s more to logging in than typing your password.

Host authentication

Negotiation of session key

Optional host-based trust (no auth, really)
Optional publickey auth

Optional certificate auth

Optional password auth

Notice that password is the last option...

| thought we already did public keys

SSH first creates an authentic, encrypted connection between the hosts, then
walits for the user to do something

Usually, that means opening a login session: establishing who you are and
connecting to a shell.

Again, password is the last way to do this.

Publickey authentication cannot be recommended too strongly!

Forget your password: publickey authentication

ssh-keygen

ssh-copy-id -i .ssh/id_rsa me@remotehost
ssh me@remotehost

profit passwordlessly

BN~

YOU CAN ONLY DO THIS ON A TRUSTED MACHINE.

Remember that the private key is the moral equivalent of your password: don't let
it escape.

Encrypt your private key

Use a password to unlock a thing that kinda sorta acts like a password? Think of
it as a master password for a password-manager app. We call the key to your
private key a “passphrase”. You could type this passphrase each time you need

to login - pointless!

e Key agent holds the decrypted keys, uses them automatically when you need

them to SSH.
e Run the agent only on secure machines, preferably only when you're sitting in

front of them.
e Agent can timeout (forget keys after N hours, etc)

keytypes

SSH has been around a long time - there are lots of deprecations.

No one even mentions the ssh-1 protocol so forget | did.

RSA keys used to be under a patent cloud.

DSA keys were unclouded, but there are some obscure issues that probably
make them unsafe to use. Same for ECDSA.

All keys become more crackable, so to be conservative is to choose longer
keys (doesn’t affect usability)

Ed25519 probably the best choice, but RSA is pretty OK.

What keys look like

[hahn@hahn ~]$ ssh-keygen -P '' -C sample -t ssh-ed25519 -f sample

Generating public/private ssh-ed25519 key pair.

Your identification has been saved in sample.

Your public key has been saved in sample.pub.

[hahn@hahn ~]$ cat sample.pub

ssh-ed25519 AAAAC3NzaCllZDIINTESAAAAIDOcuGuUNnxDODOVvIpY46zDy+zx4E1SBDCfYHKGMAFA0OL7 sample
[hahn@hahn ~]$ cat sample

b3BlbnNzaClrzXktdjEAAAAABGSVOMUAAAAEDLMOUZQAAAAAAAAABAAAAMWAAAALZC2gLZW
QyNTUxOQAAACAZNLhrp8Q9AzryaWOOsw8vs8eRJIJUgQwn2ByhjABOQKJewAAAIDMImEDzI5h
QWAAAAtLzc2gtZWQyNTUxOQAAACAZNLhrp8Q9AZzryaWOOsw8vs8eBJIJUgQwn2ByhjABQKJew
AAAEDSvgV2Y70VRGgRINMTD9a7gD/41KG8CrDAKHOQ1Lmc8DOcuGunxDODOvIpY46zDy+z
x4E1SBDCEYHKGMAFAOLl 7TAAAACWhhaG5AaGFobgECAWQ=

Config files, always config files

~/.ssh - keep everything here

~/.ssh/id_rsa - an RSA private key
~/.ssh/id_rsa.pub - public part

~/.ssh/config - put stuff here to avoid typing
~/.ssh/authorized_keys - public keys go here

“Id_rsa” is just the default that ssh-keygen uses. You can, and should, give your
keys mnemonic names.

| typically put my name, a purpose and/or year into the name/comment.

OK, back to tunneling

When you connect to a machine:

1. Host-host authentication

2. User authorization (pubkey or password)

3. Tunnel is created to a shell (command interpreter)

But notice - we’ve got a secure connection useful for other things, not just a

(single) shell connection.

SSHFS

Basically: sshfs remotehost:/some/dir local-mount-point

®@ Sshfs uses ssh to connect to remotehost
@ Tt runs sftp there, tunneling the connection
@ Tt uses that access to make remote files appear local

(oh, yeah: sftp is a useful commandline tool on its own -
instead of connecting to a remote shell, i1t connects to a
really simple file get/put command. Also: scp)

Sshfs looks like this:

[hahn@hahnl ~]$ df

Filesystem 1K-blocks Used Available Use% Mounted on
/dev/sda2 51474912 17238756 31598332 36% /

/dev/sdal 999320 182684 747824 20% /boot

/dev/sda3 177980276 164953804 3962488 98% /home

cedar: 247611681392 12765039384 222364289328 6% /home/hahn/mnt/cdr
graham: 68719476736 9148746752 59570729984 14% /home/hahn/mnt/gra

In other words, | have my Cedar and Graham home directory tries mounted as
local filesystems on my workstation. | can edit files directly, copy between them,
etc.

ProxyJump

[hahn@hahnl ~]$ ssh -o proxyjump=graham.computecanada.ca gral
Last login: Wed Mar 14 10:31:10 2018 from gra-login3.graham.sharcnet

* Kk K

Welcome to the ComputeCanada/SHARCNET cluster Graham.

[hahn@gral ~]$

What just happened?

| used SSH to connect to Graham to open a tunnel to the SSH server on gra1,
which is not exposed to the internet. This applies to many internal hosts
accessible through an exposed host...

ProxyJump is proxying SSH

e Authenticate, authorize, create session on graham
e Create tunnel connecting local port 22 to port 22 on gra1
e Authenticate, authorize, create session on gra1

Note that this can be chained - jump-to-jump, and that gra1 is authenticating with
the local host, not the jump host.

Here’s our first “great power, great responsibility” situation: don’t try to use this to
abuse compute nodes of our cluster.

Port forwarding is like a cosmic wormhole

ssh -R 10.53.0.21:28000:1icense-matlab.mcmaster.ca:27000 \
-R 10.53.0.21:27001:1license-matlab.mcmaster.ca:27001 \

sharcnet@igaluk.sharcnet.ca

| use this actual command (with some extras) to tunnel the McMaster campus
matlab license. It creates a wormhole on Iqaluk whose remote is license-matlab.

Again, ssh is doing authentication, authorization first, then setting up a session.
That session simply does two port forwards - it listens on lqaluk for connections to
the given ports, shoves the traffic through the tunnel to the remote side, where it
has a socket connecting to the license server

Lots of forwarding

e Previously mentioned X forwarding

e ProxyJump is forwarding of SSH’s port 22

e There's also -L for forwarding when the remote end of the wormhole is on the
ssh destination.

e There’s even SOCKS dynamic port forwarding that can be used as a general
proxy for, eg, web surfing

Ways to copy files

Previously mentioned SSHFS, SFTP, SCP
Rsync synchronizes two filesystem trees:

O

(@)

rsync —-a cedar.computecanada.ca:project/something .

This ensures that there is a local file/tree called “something” whose contents/size/permissions
match the remote version

Does this lazily! Doesn’t copy files it doesn’t need to - doesn’t even copy sections of files that
are already identical!

Both source and destination can be remote! (Bit tricky though, since source has to be able to
connect to destination directly...)

Rsync is great if you want to sync - to periodically update a copy of a tree

Warning: Rsync cares a lot about whether there’s a trailing /' on the source

Since it's lazy, it’s also incremental! |E: if interrupted, will continue where it stopped.

Publish a private key!?!

Remember ~/.ssh/authorized keys?

An interesting extension is that you can prefix a key with some assertions about
how the key can be used:

command="/home/hahn/bin/something -fancy" ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQC/B3787w/HVgl+t5GoFb1QWmX010I)7PPdm8gTI6xb83sH2kTIJHUWZ+2ZV946t
J759aDPOTeNVE70Fmt rgnDBl1dIHK6Jty2y6riX/uJZBCBsaZHMXs6H1G7P/KOO2K+Momyl9tJtIV1+1gAnoUUJwt8D2
fgbpcSJZvu8i0Rvkr9QRrIR/U9/yyT1DjVvpFUhg7fgPTxf70mUDgsstsgAUReok0OScVyzF9CCOE JxxwulUJIxrglIk
cU/jmHgxu7/JXY3ex4Im01rgQSOcwvwiWybPkonr9zXCT+VTFagavIfoVLQz13z4U6ny30A6gK73eaSmzevrgiYOpTE
eLMxLgPP fancy-key

SSH calls this “forced command” key

e Key can only run that command

e If you “ssh -i fancy-key user@remote somethingelse”, the “somethingelse” is
NOT what gets run.

e “Somethingelse” is available to the forced command as
$SSH_ORIGINAL_COMMAND

e Other important key constraints: from="my-host.com”, no-pty,
no-X11-forwarding, no-port-forwarding, no-agent-forwarding

Private key as capability

This means we have a private key which can only do a specific thing, on a specific
host (where it’s installed in authorized_keys), potentially only from specific places.

You can publish this private key!
Or at least use it to give a specific, limited capability to someone else.
For instance, ability to access a specific file, command, etc.

This is also the ONLY situation where it’s justified to use no passphrase!

