
Serial farming on
Graham

Sergey Mashchenko
SHARCNET

Outline

● Introduction
● Serial farming on Graham

– Simple for loop
– Array job
– Bundling up
– Whole node farming
– Exit status processing
– Fully automated farming with the META package

● Conclusions

Introduction

What is serial farming?

● “Farming” is running a large number of cluster jobs which are
effectively independent of each other but are solving different
aspects of the same problem.
– If the jobs are serial (single cpu-core), we call it “serial farming”. One

can also have “MPI farming”, “GPU farming” etc.
– The independence means that the jobs in the farm can run in any

order, concurrently or sequentially.
– A typical example is solving problems using a Monte Carlo approach.

Advantages

● As the throughput of serial farms grows linearly with the number
of jobs (due to the lack of parallel overheads), such applications
have perfect (100%) scalability and are very efficient.

● The independence of jobs (and typically a small amount of
resources per job) in a serial farm makes farming very
scheduler-friendly.

● With serial farms, one can very easily upscale and downscale
the size of the problem you are solving, without changing the
code.

Challenges

● Many repetitive commands required
– Solution: automation scripts

● Often serial farming jobs are very short (<20 min), meaning
large scheduler overheads and poor efficiency
– Solution: bundling up individual jobs into meta jobs. This also helps to

bypass the limit on the number of jobs (5000 for Graham).
● Sometimes bundling up works poorly (when individual jobs have

a large range of runtimes)
– Solution: using dynamic workload balancing

Challenges (2)

● With a large number of jobs a few might fail, and it can be time
consuming to track them down and re-run
– Solution: smart scripts can track the exit status of all jobs, and

resubmit those that failed or never ran
● Running more than one farm concurrently can be messy and

fail-prone
– Solution: smart scripts can handle many concurrent farms

Serial farming on Graham

Setup

● In all the examples presented here, the following simple way to
describe the work for a serial farm is used
– Each instance of a serial farm computation is called a “case”.
– All cases are described in a text file “table.dat”, one line per case
– Each line is a full command to be executed for each case. E.g.,

/home/user/bin/code arg1 arg2 arg3

code < input1.txt

cp -f ../input_${ID} input; code

Setup (2)

● Different scripting languages can be used to write farming
scripts

● I am using Bash scripting in my examples, in part because it
simplifies scripts (because in SLURM – the Graham scheduler –
Bash is used internally in job scripts).

● To copy all the examples to your home directory, execute the
following on Graham:

 $ cp -pr ~syam/Serial_farming ~

1. A simple For loop

$ cd ~/Serial_farming/1_FOR_LOOP

$./for_loop.sh

Submitted batch job 1595103
Submitted batch job 1595108
Submitted batch job 1595112
Submitted batch job 1595115
$ cat *.out
1; sleep 4
2; sleep 27
...

for_loop.sh

Simplest case - using for loop to submit a serial farm
The input file table.dat contains individual cases - one case per line

export TABLE=table.dat

Total number of cases (= number of jobs to submit):
N_cases=$(cat "$TABLE" | wc -l)

Submitting one job per case using the for loop:
for ((i=1; i<=$N_cases; i++))
 do
 # Using environment variable I_FOR to communicate the case number to individual jobs:
 export I_FOR=$i
 sbatch job_script.sh
 done

job_script.sh

#!/bin/bash
Here you should provide the sbatch arguments to be used in all jobs in this serial farm
#SBATCH -t 0-00:10
#SBATCH --mem=1000
#SBATCH -A def-syam

Extracing the $I_FOR-th line from file $TABLE:
LINE=`sed -n ${I_FOR}p "$TABLE"`

Echoing the command (optional), with the case number prepended:
echo "$I_FOR; $LINE"

Executing the command:
eval "$LINE"

Tips

1) It is convenient to use environment variables to pass arguments to the
job script, e.g.:

export I_FOR=$i

2) One can use the “sed” command to extract the $i-th line of a text file
$TABLE:

LINE=`sed -n ${i}p "$TABLE"`

3) Using “eval” helps to process properly semicolumns, redirections etc
when executing shell commands contained in a variable:

eval "$LINE"

Tips (cont.)

4) You can kill all your jobs on the cluster using

$ scancel -u user_name

A simple For loop summary

● A very simple way to achieve automation at the job submission
stage

● Lacking all other features which are important for serial farming
(no support for short job bundling, no job exit status processing,
no automation for jobs query and killing, no support for running
concurrent farms)

2. Array jobs

$ cd ~/Serial_farming/2_JOB_ARRAY

$./job_array.sh

Submitted batch job 1596114

$ cat *.out
1; sleep 4
2; sleep 27
...

job_array.sh

#!/bin/bash
Using the array job feature of SLURM to submit a serial farm.
The input file table.dat contains individual cases - one case per line
A simple test table can be generated with
for ((i=1; i<=4; i++)); do echo "sleep $(($RANDOM % 30))"; done > table.dat

export TABLE=table.dat

Total number of cases (= number of jobs to submit):
N_cases=$(cat "$TABLE" | wc -l)

Submitting an array job to the scheduler:
sbatch --array=1-$N_cases job_script.sh

job_script.sh

#!/bin/bash
Here you should provide the sbatch arguments to be used in all jobs in this serial farm
#SBATCH -t 0-00:10
#SBATCH --mem=1000
#SBATCH -A def-syam

Case number is given by $SLURM_ARRAY_TASK_ID environment variable:
i=$SLURM_ARRAY_TASK_ID

Extracing the $i-th line from file $TABLE:
LINE=`sed -n ${i}p "$TABLE"`
Echoing the command (optional), with the case number prepended:
echo "$i; $LINE"
Executing the command:
eval "$LINE"

Tips (cont.)

5) In array jobs, the SLURM variable $SLURM_ARRAY_TASK_ID
should be used to identify the specific case inside the job script,
e.g.:

i=$SLURM_ARRAY_TASK_ID

LINE=`sed -n ${i}p "$TABLE"`

Array jobs summary

● A slightly more elegant way to automate job submission
(compared to a simple for loop method).

● Each individual job from an array job is still submitted and
allocated one by one internally, by SLURM.
– The same limit on the total number of jobs (5000 on Graham)
– The same scheduler overhead per job (meaning jobs <20 min long

are very inefficient)
● All other important features of serial farming are still missing.

3. Bundling up

$ cd ~/Serial_farming/3_BUNDLE_UP

$./bundle_up.sh

Submitting 6 jobs...
Submitted batch job 1600024
Submitted batch job 1600027
...

$ cat *.out
1; sleep 3
2; sleep 9
...

bundle_up.sh

#!/bin/bash
Bundling up multiple short cases (simplest - static - workload distribution).
Four environment variables are passed to the job script - TABLE, N_CASES, N_JOBS, I0.
export TABLE=table.dat
Target bundle factor (number of cases per job; can be a bit bigger for individual jobs):
N_bundle=15
Total number of cases (= number of jobs to submit):
export N_CASES=$(cat "$TABLE" | wc -l)
Number of jobs (rounded to the smaller integer value - this ensures that the actual bundle factor is never smaller
than $N_bundle):
export N_JOBS=$(($N_CASES / $N_bundle))
echo "Submitting $N_JOBS jobs..."

for ((i=1; i<=$N_JOBS; i++))
 do
 export I0=$i
 sbatch job_script.sh
 done

job_script.sh

!/bin/bash
#SBATCH -t 0-00:10
#SBATCH --mem=1000
#SBATCH -A def-syam

Simple way to achieve the best static workload distribution of $N_CASES cases over $N_JOBS jobs,
with the number of cases per job equal or larger that the target $N_bundle:
for ((i=$I0; i<=$N_CASES; i=i+$N_JOBS))
 do
 LINE=`sed -n ${i}p "$TABLE"`

 echo "$i; $LINE"

 eval "$LINE"
 done

Tips (cont.)

6) Choose the N_bundle value such that the bundled job length
would get larger than ~20 minutes, and don't forget to modify
the “#SBATCH -t“ argument accordingly.

7) In SLURM, job scripts are just BASH scripts, so one can use
any BASH commands there (for loops etc.).

8) “for (i=thread_ID; i<M; i+=N_threads)” is the classical way to
achieve the best static workload balancing when computing M
cases in N_threads concurrent threads/processes.

Bundling Up summary

● Be careful – bad table.dat or N_bundle can result in a huge
number of jobs

● In addition to job submission automation, this approach
introduces the second important serial farming feature which is
needed when job runtimes are short (<20 minutes).

● One can dramatically improve throughput of very short jobs (<5
minutes).

● Also, the 5000 jobs limit can be circumvented.

4. Whole node farming

$ cd ~/Serial_farming/4_WHOLE_NODE

$./whole_node.sh

Submitted batch job 1601528

$ cat out.*
1; sleep 3
33; sleep 9
65; sleep 2
...

whole_node.sh

#!/bin/bash
Serial farm running on a whole node (also using an optional
bundling up - for short jobs).
The input file table.dat containts individual cases - one case per line
One environment variable is passed to the job script - TABLE.

export TABLE=table.dat

sbatch job_script.sh

job_script.sh

Total memory (for all processes)
#SBATCH --mem=100G
These switches ensure a whole node reservation:
#SBATCH --nodes=1
#SBATCH --tasks-per-node=32

N_cases=$(cat "$TABLE" | wc -l)

Number of threads = number of cpu cores on the node:
N_threads=$SLURM_TASKS_PER_NODE

Running $N_threads concurrently on the node:
for ((i=1; i<=$N_threads; i++))
 do
 ./single_thread.sh $i $N_cases $N_threads &> out.$i &
 done

Without "wait", the job would finish as soon as all the threads are launched.
"wait" forces the job to wait until all the background processes are done.
wait

single_thread.sh

#!/bin/bash
Task performed by a single thread. $TABLE is an environment variable.

thread_ID=$1
N_cases=$2
N_threads=$3

Simple way to achieve the best static workload distribution of $N_cases cases over $N_threads threads:
for ((i=$thread_ID; i<=$N_cases; i=i+$N_threads))
 do
 LINE=`sed -n ${i}p "$TABLE"`

 echo "$i; $LINE"

 eval "$LINE"
 done

Tips (cont.)

9) Running multiple serial processes on a whole node is
accomplished by
 (a) Requesting a whole node (sbatch switches --nodes=N and
 --tasks-per-node=32)
 (b) Sending all the processes to background with “&”
 (c) Adding “wait” command at the end of the job script

Whole Node summary

● Often whole node (“by-node”) allocation is faster than by-core
allocation, so this method can be more efficient.

● Also, this method is better if the jobs need shared access to the
node-local fast SSD drive (at /tmp).

● Otherwise, this method is less flexible, as only 32 cpu cores can
participate in a farm.

5. Exit status processing

$ cd ~/Serial_farming/5_STATUS

$./submit_status.sh

Submitted batch job 1601528

$ cat out.*
1; sleep 3
33; sleep 9
65; sleep 2
...

submit_status.sh
#!/bin/bash
Capturing the exit status of individual cases, with bundling up.

export TABLE=table.dat
Target bundle factor (number of cases per job; can be a bit bigger for individual jobs):
N_bundle=15
Total number of cases (= number of jobs to submit):
export N_CASES=$(cat "$TABLE" | wc -l)
Number of jobs (rounded to the smaller integer value - this ensures that the actual bundle factor is never smaller than
$N_bundle):
export N_JOBS=$(($N_CASES / $N_bundle))

echo "Submitting $N_JOBS jobs..."

\rm status.*

for ((i=1; i<=$N_JOBS; i++))
 do
 export I0=$i
 sbatch job_script.sh
 done

job_script.sh

for ((i=$I0; i<=$N_CASES; i=i+$N_JOBS))
 do
 # Extracting the $i-th line from file $TABLE:
 LINE=`sed -n ${i}p "$TABLE"`

 # Echoing the command (optional), with the case number prepended:
 echo "$i $LINE"

 # Executing the command (if using multiple commands the code execution should be the last one):
 eval "$LINE"

 # Exit status of the code:
 STATUS=$?

 # Storing the ID and the exit status for this case in a separate for each job status.* file:
 echo $i $STATUS >> status.$I0
 done

Tips (cont.)

10) Read the value of “$?” variable to find out the status of the
previous command.

11) Many research codes return a good status (0) even if there
was a problem. One can add more intelligence to the
job_script.sh file to handle your code specifics.

• For example, if your code is expected to create a non-zero file (say,
“output.dat”) in the course of a normal run, you can use that to fine-
tune the STATUS variable in job_script.sh:

STATUS=$?
if test ! -s output.dat
 then
 STATUS=1
 fi

Status Processing summary

● This approach allows capturing of code exit status for all the
cases in your serial farm. This should greatly simplify the task of
identifying failed cases.

● The next obvious improvement would be to have the ability to
automatically re-submit all the cases which failed, and also
those which never ran. This will be accomplished in our next
(and final) example – META scripts.

6. META package

$ mkdir ~/bin

$ mv ~/Serial_farming/6_META/bin/* ~/bin

$ export PATH=~/bin:$PATH

$ cd ~/Serial_farming/6_META

Customize the files table.dat, job_script.sh, and single_case.run
in ~/Serial_farming/6_META to your specific case.

Overview

● META is a package which covers all the essential serial farming
needs:
– Automates farm submission, query, killing, analysis and re-submission

of the cases which failed or never ran.
– Supports both long (> 20 minutes; one case per job) and short (<20

minutes; multiple cases per job) case runtimes.
– In the multiple cases per job mode, uses dynamic workload balancing

between running jobs (great when cases' runtimes vary a lot)
– Any number of independent farms can be run on the cluster

concurrently.
– Has some advanced features.

List of META commands

● submit.run N : Submits the farm either in a one case per job mode (N=-1) or a
multiple cases per job mode (N>0 is the number of the meta jobs to run)

● query.run : Prints a one line summary of the farm's state
● list.run : Lists all queued and running jobs of the farm
● kill.run : Kills the farm
● prune.run : Kills all queued jobs of the farm
● Status.run : Lists exit statuses (one line per case). If “-f” switch is used, places

all failed cases at the bottom.
● resubmit.run N : Resubmits all cases which failed or never ran.
● clean.run : deletes all files/subdirectories in the farm directory except for

table.dat, job_script.sh, and single_case.run.

job_script.sh

#!/bin/bash
Here you should provide the sbatch arguments to be used in all jobs in this
serial farm
It has to contain the runtime switch (either -t or --time):
#SBATCH -t 0-00:10
#SBATCH --mem=1000
#SBATCH -A def-syam

Don't change this line:
task.run

single_case.run

++++++++++++++++++++++ This part can be customized: ++++++++++++++++++++++++
Here:
$ID contains the case id from the original table
$COMM is the line corresponding to the case $ID in the original table, without the ID field

mkdir -p RUN$ID
cd RUN$ID

Executing the command (if using multiple commands the code execution should be the last one):
eval "$COMM" &> out.log
Exit status of the code:
STATUS=$?

cd ..
++

Some details

● One should create a separate directory for each farm you want to run:

 $ cp -pr ~/Serial_farming/6_META ~/Farm1
 $ cp -pr ~/Serial_farming/6_META ~/Farm2
 ...

● All META commands should be executed inside the corresponding farm's
directory.

● The only obligatory SBATCH switch in job_script.sh is “#SBATCH -t”.
Additional switches can be supplied via optional command line
arguments to submit.run:

 $ submit.run N [additional sbatch arguments]

Conclusions

● Serial farming can be messy, time consuming, and error prone if
proper tools are not used.

● This webinar presented a few different examples of farming
scripts, starting from a simplest for loop job submission
automation, and ending in the all-in-one META package.

● The script examples and tips provided should help you to
become a seasoned serial farmer, without spending too much
time and efforts.

● Questions? Email me to syam@sharcnet.ca

mailto:syam@sharcnet.ca

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

