
META: running a large number of jobs
conveniently

Sergey Mashchenko
SHARCNET / Compute Canada

October 6, 2021

06/10/21 META package, by Sergey Mashchenko 2 / 29

Overview
● Usage scenario
● Algorithm
● Main features
● Commands
● Installation
● Live demo

06/10/21 META package, by Sergey Mashchenko 3 / 29

Scenario
● You need to run a large (many thousands) number of

jobs, e.g.
– Soil evolution model for different patches across the globe
– Design and optimization of a multi-element optical lens,

starting from a random setup (Monte-Carlo)

06/10/21 META package, by Sergey Mashchenko 4 / 29

Solution #1
● Simplest: submit all these jobs using a bash loop:

 for ((i=0; i<5000; i++))
 do
 sbatch my_job_script.sh $i
 done

● Issues: slow, heavy load for the scheduler, ...

06/10/21 META package, by Sergey Mashchenko 5 / 29

Solution #2
● Use Job Array feature of our scheduler, SLURM

$ sbatch --array=0-4999 my_job_script2.sh
$ cat my_job_script2.sh
…
i = $SLURM_ARRAY_TASK_ID
…

● Heavy load for the scheduler, ...

06/10/21 META package, by Sergey Mashchenko 6 / 29

Solution #3
● One can also try to bundle up a bunch of serial jobs

into one large parallel (MPI) job, where each rank
processes one or more code executions – GNU
parallel, GLOST

● Issues: queue wait time can become significantly
longer, ...

06/10/21 META package, by Sergey Mashchenko 7 / 29

META: the optimal solution
● In META approach, you submit a bunch of “meta-jobs”, each of which

would process multiple independent computations.
● Similarly to GLOST, each allocated cpu core runs multiple code

instances.
● Unlike GLOST, the cpu cores are not bundled up in a large parallel job.
● So META has both

– low overhead/scheduler load, and
– short queue wait time.

06/10/21 META package, by Sergey Mashchenko 8 / 29

Time axis

Meta
jobs

#1

#2

#3

#4 1 2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

End of serial farming

Not
wasted!

06/10/21 META package, by Sergey Mashchenko 9 / 29

GLOST vs META

Wasted cycles

Ranks syncing causes
long queue wait times

06/10/21 META package, by Sergey Mashchenko 10 / 29

META algorithm

Serialized access to the
file containing the current
computation #, using
lockfile command.

06/10/21 META package, by Sergey Mashchenko 11 / 29

Additional META advantages
● It has a very convenient resubmit feature

– With a single command, all computations which failed or
never ran will be resubmitted as a new serial farm

● Meta-jobs constantly analyze runtimes for individual
code executions, and use these data to improve the
efficiency.

06/10/21 META package, by Sergey Mashchenko 12 / 29

Improving efficiency with runtimes
● All running meta-jobs store runtimes for individual

computations in a single file
● Once the list is long enough (>=8 runtimes), metajobs use

the list to make a conservative (top 12.5% quantile)
estimate of how long the runtime typically is.

● Metajobs use this information to determine whether they
should start the next code execution, or die early.

06/10/21 META package, by Sergey Mashchenko 13 / 29

To process or not?

1 2 5 10

End of the
meta-job

Time left

18
To process, or not
process?

Conservative estimate
of the runtime

A single meta-job

06/10/21 META package, by Sergey Mashchenko 14 / 29

Main features of META
● Two modes of operation

– META mode

– Simpler mode of one job for each code execution

● Convenient resubmit feature

– For all computations which failed or never ran

● Ability to independently operate multiple serial farms on the same cluster

● The research code can be of any kind – serial, multi-threaded, MPI, GPU

● The exit status and timing are captured for each code execution

● For convenience, additional commands: list, query, kill, status, prune, clean

06/10/21 META package, by Sergey Mashchenko 15 / 29

META commands

Submits the farm to the scheduler.

Here N is either the number of meta-jobs to use, or “-1” (minus one) if you
want to use the simpler “one job for each computation” mode. In the latter
case, the number of jobs will be equal to the number of computations to
perform.

Most of sbatch arguments can be provided either in the job script file, or as
an optional argument to submit.run.

submit.run N {optional sbatch arguments}

06/10/21 META package, by Sergey Mashchenko 16 / 29

META commands

Resubmits all computations which failed or never ran as a new farm. Can
only be executed after the previous run is completed. You can use resubmit
as many times as needed.

The arguments are the same as for submit.run. They do not have to match
the arguments from the prior submit.run or resubmit.run execution.

resubmit.run N {optional sbatch arguments}

06/10/21 META package, by Sergey Mashchenko 17 / 29

META commands

Will list all the jobs with their current state for the farm.

list.run

Will provide a one line summary (number of queued / running / done jobs)
in the farm, which is more convenient than using “list.run” when the number
of jobs is large. It will also “prune” queued jobs if warranted.

query.run

06/10/21 META package, by Sergey Mashchenko 18 / 29

META commands

Will kill all the running/queued jobs in the farm.

kill.run

Will only kill (remove) queued jobs.

prune.run

06/10/21 META package, by Sergey Mashchenko 19 / 29

META commands

(Capital “S”!) will list statuses of all processed cases. With the optional "-f"
switch, the non-zero status lines (if any) will be listed at the end.

Status.run {-f}

Will delete all the files in the current directory (including subdirectories if any
present), except for *.run scripts, job_script.sh, table.dat, and bin
subdirectory.

clean.run

06/10/21 META package, by Sergey Mashchenko 20 / 29

Important notes
● META commands have to be executed inside a farm

directory.
● Multiple farms can be operated at the same time, one just

has to switch to the corresponding directory.
● By default, a new subdirectory is created for each

independent computation. This can be changed inside
single_case.sh script.

06/10/21 META package, by Sergey Mashchenko 21 / 29

Installing META
● Login to the cluster.
● Use "git" to clone our META repository:

$ git clone https://git.sharcnet.ca/syam/META.git
● Create directory ~/bin if you don't have one:

$ mkdir ~/bin
● Copy all the files inside META/bin subdirectory to ~/bin:

$ cp -p META/bin/* ~/bin
● Add ~/bin to your $PATH variable (you can add the line below at the end of your ~/.bashrc

file):

$ export PATH=/home/$USER/bin:$PATH

06/10/21 META package, by Sergey Mashchenko 22 / 29

Installing META
● Copy your code and initial conditions files to the META directory if needed.
● Create table.dat inside the META directory

– Text file, each line describes one independent computation
– Multiple commands can be used, separated by “;”
– Redirects (<, >) and pipes (|) can be used

● Modify "job_script.sh" file to suit your needs. In particular, use a correct account name, and set
an appropriate job runtime.

● Modify “single_case.sh” if needed.
● To run another farm concurrently with the first one, create another directory - say, META1 - and

copy there and customize the files single_case.sh and job_script.sh, and create a new table.dat
file there.

06/10/21 META package, by Sergey Mashchenko 23 / 29

Using META
● cd to the corresponding farm directory:
$ cd ~/META

● Initiate the farm, say using 8 meta-jobs:
$ submit.run 8

● Or you can use the simpler “one job per computation” mode:
$ submit.run -1

● List the state of all the (meta-)jobs:
$ list.run

● One line summary of the farm’s state:
$ query.run

06/10/21 META package, by Sergey Mashchenko 24 / 29

job_script.sh file
#!/bin/bash

Here you should provide the sbatch arguments to be used in all jobs in this
serial farm

It has to contain the runtime switch (either -t or --time):

#SBATCH -t 0-00:10

#SBATCH --mem=4G

#SBATCH -A Your_account_name

Don't change this line:

task.run

06/10/21 META package, by Sergey Mashchenko 25 / 29

single_case.sh file
++++++++++++++++++++++ This part can be customized: ++++++++++++++++++++++++

Here:

$ID contains the case id from the original table (can be used to provide a unique seed to the code etc)

$COMM is the line corresponding to the case $ID in the original table, without the ID field

$SLURM_JOB_ID is the jobid for the current meta-job (convenient for creating per-job files)

mkdir -p RUN$ID

cd RUN$ID

echo "Case $ID:"

Executing the command (a line from table.dat)

It's allowed to use more than one shell command (separated by semi-columns) on a single line

eval "$COMM"

Exit status of the code:

STATUS=$?

cd ..

+++

06/10/21 META package, by Sergey Mashchenko 26 / 29

table.dat file
~/bin/code1 1.0 10 2.1

~/bin/code1 1.5 12 2.9

cp -f /input_dir/input1 input; /code_dir/code

cp -f /input_dir/input2 input; /code_dir/code

code.exe < ../IC.1

code.exe < ../IC.2

sleep 10m

...

06/10/21 META package, by Sergey Mashchenko 27 / 29

Live demo

06/10/21 META package, by Sergey Mashchenko 28 / 29

Help resources
● Full documentation is maintained on our wiki (feel free to make

corrections if needed):

https://docs.computecanada.ca/wiki/META_package_for_serial_farming

● Submit a ticket to support@computecanada.ca (mention my name
– Sergey Mashchenko).

https://docs.computecanada.ca/wiki/META_package_for_serial_farming
mailto:support@computecanada.ca

06/10/21 META package, by Sergey Mashchenko 29 / 29

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

