
Conquering the Scheduler
Starting @ ~12:05pm

SHARCNET
General Interest Webinar Series

Tyler Collins
High Performance Computing Consultant

SHARCNET, Brock University
Feb 9th, 2022



The Wiki

Before we go any further…

Always always always check the wiki

No, really… please

https://docs.computecanada.ca/wiki/Compute_Canada_Documentation

If you can’t find something, contact us!

support@computecanada.ca

https://docs.computecanada.ca/wiki/Compute_Canada_Documentation
mailto:support@computecanada.ca


Today’s Outline

Goal: understand how to get better throughput from the scheduler

1. Definitions
a. Core Equivalent / Billing
b. Fairshare and Priority
c. Partitioning

2. Assumptions
3. Conquering!

a. Easy wins
b. MPI, GLOST, META, etc

4. Final Considerations
5. Open Discussion



Definitions: Core Equivalent and Billing

Formal definitions and ratios can be found on the wiki

Rationale:

● If a job specifies an entire node’s memory but only a single core, it has 
isolated all other jobs from running on that node

● The job should be billed accordingly
● This function is known as the Core Equivalent
● Can be seen in slurm as “billing”

○ Does not imply any monetary cost!
● Some examples to follow

https://docs.computecanada.ca/wiki/Allocations_and_compute_scheduling


Definitions: Core Equivalent and Billing



Definitions: Core Equivalent and Billing

2.0 CE                                                                                             2.5 CE



GPU Equivalent?

Short answer: yes

Long answer:



Definitions: Fairshare and Priority

Formal definitions can be found here

● Fairshare:
○ The “slice” of the system your group is entitled to
○ This value fluctuates based on recent usage

● Priority: Function of an group’s fairshare combined with job size
○ RAC accounts typically have larger fairshare’s
○ Time in queue does increase priority, however it is almost a totally negligible amount

● In general: the more you have used lately, the less priority you have
○ Gives other users their “turn”
○ A half-life decay exists that enables recovery of fairshare
○ NOT A BANK ACCOUNT

https://docs.computecanada.ca/wiki/Job_scheduling_policies


Definitions: Fairshare and Priority

How do we see these values and make decisions based on them?

LevelFS is the most important column; see wiki for formal definitions

● Value >1: under served, should see fast responsiveness
● Value 0 < x < 1: well served, may see wait times
● As the value approaches 0, more wait times will be seen

https://docs.computecanada.ca/wiki/Job_scheduling_policies


Definitions: Partitioning

The general purpose systems contain different resource amounts dedicated to 
serving particular types of job requests

This is to maximize the responsiveness of the cluster



Definitions: Partitioning

System partitioning at a glance… Observations:

● Look how few large memory 
resources!

● 28 days by core is really 
competitive…

● Backfill seems great!
○ Read the wiki
○ In general, smaller jobs that are 

used to “pack” the cluster so that 
there are less idle resources

○ Without backfill, jobs strictly wait in 
line as in previous figure

https://docs.computecanada.ca/wiki/Job_scheduling_policies#Backfilling


Definitions: Partitioning

How to view partition information on the 
systems?

Max walltime partitions are named: b1-b7

Again note the comparatively less resources in 
large memory and long duration partitions!

More information with clusterstats

https://docs.computecanada.ca/wiki/Clusterstats


Assumptions

● Researchers often isolate themselves to very few nodes without noticing
○ Jobs with hyper specific demands may wait longer

● The easier you make it for slurm to schedule your job, the sooner it will run
○ With some notable exceptions…
○ Note the relation to the above point

● The systems have a lot more bynode resources than anything else
○ Can we take advantage of this?

● Resource waste is bad and should be optimized away
○ There will be an impact to your priority/fairshare

● Development time is often a cost worth paying to maximize throughput



Conquering: Stage 1

Starting with the low hanging fruit:

1. Submitting as much work as possible at once
a. Slurm job dependencies if needed; see “--dependency” in sbatch manual

2. Coordinating with others in your lab/group
a. Recall how to check your group’s fairshare

3. Accuracy of job size
a. Do not ask for things you don’t need like GPUs or an extra 20 days of run time

i. You will increase your billing by requesting more resources and not using them
ii. You will not decrease your priority by asking for extra time, but you wait time will go up

b. Profile your execution with interactive jobs
c. Make sure you are isolating yourself to the maximal amount of resources available

i. Falling into the largemem partitions is dangerous

https://docs.computecanada.ca/wiki/Running_jobs


Conquering: Stage 2

Consider just the individual job:

● 27-day run time
● 6 cores, 128G of memory
● 1000 submissions

You are waiting for an ENTIRE large memory node to be free for 27 days 1000 
times



Conquering: Stage 2 - Refinement

Say you have arrived at the following job shape via your own profiling and 
research requirements: 

● 5-day run time
● 6 cores, 24G of memory
● 1000 submissions

This is infinitely better, but is it good enough if a reviewer asks for... 10,000 
submissions?



Conquering: Stage 2 - Review

Say you have arrived at the following job shape via your own profiling and research 
requirements: 

● 5-day run time
● 6 cores, 24G of memory
● 1000 submissions

Okay; how bad is that really? This looks really nicely sized!

● Run time: competing against all other jobs in the b4 (7-day) partitions
● Core and memory size: sharing the node and finding this shape/duration 1000 

times
○ This job is only a fifth of a base memory node

● This job is difficult or impossible to backfill



Conquering: Stage 2 - Possibilities

From previous: 

● 5-day run time
● 6 cores, 24G of memory
● 1000 submissions

What are our options?

● Can we cut up the duration?
● Can we package multiple together in a single node?
● Can it be distributed via MPI, etc?

Identifying the best way forward is RESEARCHER/SOFTWARE DEPENDANT



Conquering: Stage 3 - Tuning for Duration

Can we reduce execution time of a job by dividing it up into checkpointed stages?

When should we?

● If (and only if) there is no overhead in restarting a job
● There are natural stopping points

○ i.e. saving after 10 epoch, or saving after every hour of execution

What do we gain?

● Wider range of nodes to run on
● Better backfill opportunities
● If any part of the cluster goes down, your progress is saved!

○ This is an argument for always implementing checkpointing



Conquering: Stage 3 - Tuning for Duration

Where to start for checkpointing?

● Our wiki entry on it
○ A second wiki entry with a more specific example

● Container based strategies
○ Apptainer example (Singularity’s new name)

● Implementation of your own serialized state
○ Can be as simple as writing files to scratch!

● BLCR
○ Old but potentially useful

There can be language and software specific solutions already out there!

https://docs.computecanada.ca/wiki/Points_de_contr%C3%B4le/en
https://docs.computecanada.ca/wiki/Running_jobs#Resubmitting_jobs_for_long_running_computations
https://github.com/mmore500/mwe-singularity-checkpoint
https://crd.lbl.gov/divisions/amcr/computer-science-amcr/class/research/past-projects/BLCR/


Conquering: Stage 3 - Tuning for Packaging

When should we package jobs together to run on whole nodes?

● When it is very difficult or impossible to reduce the job size further
● “Noisy neighbours” must be eliminated

What do we gain?

● Access to numerous nodes
○ Federational bias towards wholenode work

● Additional backfill opportunities
○ Even more opportunities when used in conjunction with duration tuning!



Conquering: Stage 3 - Tuning for Packaging

Where to start for job packaging?

● GLOST
○ Bundle jobs together and submit; little overhead!
○ Simple syntax

● Gnu Parallel
○ More robust handling of failures and job states

● META
○ Inhouse developed tool which combines the best of GLOST and Gnu Parallel
○ Less overhead with account wide “farm” management
○ Webinar content available as well as a very robust wiki page

As previously mentioned, investigate wiki pages or reach out to support if curious!

https://docs.computecanada.ca/wiki/GLOST
https://docs.computecanada.ca/wiki/GNU_Parallel
https://docs.computecanada.ca/wiki/META:_A_package_for_job_farming


Conquering: Stage 3 - Tuning for Distribution

What if investment is made into MPI and cores/memory are distributed across 
multiple nodes?

● You have become the grain of sand in the jar!

What do we gain?

● Extreme performance from backfilling
● Practically all idle resources are fair game!
● Mature software support on several platforms
● Sadly not always possible; ask us though!

https://docs.computecanada.ca/wiki/MPI


Final Considerations (and Complications)

Combining any/all previous stages can lead to some amazing results!

Some things to consider if your particular workflow cannot be optimized or 
reshaped:

● Job dependencies
○ If you have one stage that uses a large amount of memory and then never uses it again, try 

investigating if it is at all possible to isolate that step to its own job
○ If different steps use different amounts of cores/memory breaking the job down into separate 

parts will see responsiveness increases
● The META package also can function as a manager
● “bygpu” also exists but is beyond the scope of a one hour talk. If you would 

like more information, my email is always open and will be posted!

https://docs.computecanada.ca/wiki/META:_A_package_for_job_farming


Takeaways: Discussion / Questions

General principles from today:

● Read the CC wiki
● The easier you make it on the scheduler, the sooner your jobs can run
● Isolating yourself to resources in high demand and low supply hurts
● Exploiting the structure of the system by packaging your jobs, or distributing 

them across nodes is worth development time

Thank you for your attention!

Feel free to email me: tk11br@sharcnet.ca

Wiki: https://docs.computecanada.ca/wiki/Compute_Canada_Documentation

mailto:tk11br@sharcnet.ca
https://docs.computecanada.ca/wiki/Compute_Canada_Documentation

