
Debugging
 CUDA
 programs

General Interest webinar 2016

Sergey Mashchenko

Outline

● Introduction
● DDT debugger
● Examples (live demo)
● Summary: tips and tricks

Common Bugs

● Arithmetic
● infinities, out of range

● Logic
● infinite loop

● Syntax
● wrong operator, arguments

● Resource starvation
● memory leak

● Parallel
● race conditions
● deadlock

● Misuse
● wrong initial conditions /

insufficient checking / variable
initialization

 Parallel bugs

● In addition to usual, “serial” bugs, parallel programs can have
“parallel-only” bugs, such as

● Race conditions
– When results depend on specific ordering of commands, which is not

enforced
● Deadlocks

– When task(s) wait perpetually for a message/signal which never come

 Race condition

● Race condition manifests itself as wrong and variable code
results. (You get different results every time you run the code,
or only for some runs, and when you change the number of
threads.)

● As only shared variables are at risk of creating race conditions,
use them sparingly (only when truly necessary), and pay a lot of
attention to them during debugging.

 Deadlocks

● It happens when ranks (MPI) or threads (OpenMP/CUDA) lock
up while waiting on a locked resource that will never become
available.

● The sign of a deadlock: the program hangs (always or
sometimes) when reaching a certain point in the code.

CUDA bugs

● CUDA is a substantially more
complicated parallel platform
than say MPI and OpenMP.

● This stems from the complex
hierarchical structure of
CUDA, which is a mixture of
serial, vector, shared
memory, and distributed
memory models.

● Shared memory levels are
prone to race conditions
bugs.

● Both shared and distributed
memory levels can have
deadlock bugs.

● Let's consider these levels in
more detail.

CUDA model

Race condition bug

 __shared__ float A[BSIZE];

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 A[threadIdx.x] = d_B[i];

 // Forgetting to put this will create a bug:

 __syncthreads();

 // Each thread needs all A elements initialized:

 if (threadIdx.x==0) {

 float sum = 0;

 for (int j=0; j<BSIZE; j++)

 sum = sum + A[j];

 }

Race condition bug

● The race condition bug is
triggered when multiple
blocks concurrently read and
update the shared variable,
d_sum.

● The solution is to protect the
updates with atomicAdd().

 __device__ int d_sum;

 __global__ void MyBuggyKernel ()

 {

 int block_result;

 /* Computing block_result */

 ...

 if (threadIdx.x == 0)

 // The race condition bug:

 d_sum = d_sum + block_result;

 }

Dealing with CUDA bugs

● Avoid introducing CUDA bugs in the first place.
● Follow good CUDA programming practices.

● Catch bugs early by using a proper CUDA error capturing
mechanism.

● E.g. use macro error capture functions ERR() and Is_GPU_present()
in ~syam/CUDA_debugging/cuda_errors.h

● Use a parallel debugger like DDT (installed on monk).

 Allinea software

● In this webinar, I will focus on advanced parallel debugging tool
developed by Allinea and installed on multiple SHARCNET
clusters (orca, monk, kraken etc.), DDT. The version installed
on monk is CUDA capable.

● For detailed information on how to use DDT on our clusters,
check this wiki page:

https://www.sharcnet.ca/help/index.php/DDT

 Using DDT

● DDT can be used interactively on orca and monk development nodes
(orc-dev1 ... orc-dev4; mon-dev1).

● Use “-Y” switch with all ssh commands.
● Compile your CUDA code with low or zero optimization (-O0), and

use “-g -G” switches with nvcc to add symbolic information.
● module load ddt
● Simply prepend “ddt” in front of your code + command line

arguments:

$ ddt ./my_cuda_code arg1 arg2

Live Demo

● All examples are on SHARCNET systems, in

/home/syam/CUDA_debugging

directory.

Summary: tips and tricks

● CUDA debugging is
complicated, so use a macro
error capturing function with
every CUDA function – helps
to capture ~1/2 of all bugs.

● Do a query on a presence
and capability of the GPU(s)
at the beginning of your
code: exceeding the GPU
resources limits result in
nasty (hard to catch) bugs.

Summary: tips and tricks (cont.)

● Each level with shared
memory access (all except
for the CPU-GPU level) is
prone to race condition bugs,
which are hard to catch. Pay
close attention to all shared
variables writes.

● DDT cannot capture race
condition bugs caused by the
warp execution model. (-G
switch apparently causes all
threads in a block to execute
each line in a kernel, one line
after another.)

Summary: tips and tricks (cont.)

● Many CUDA errors (in
kernels and asynchronous
memory copies) are reported
later.

● Always use explicit
device/host suffixes/prefixes
when naming pointers.

● In CUDA “Symbol” memcopy
 functions, remember that the
device residing variable is
provided as a symbol
(name), not as a pointer.

The end

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

