
False Sharing and Contention in Parallel Codes

Paul Preney, OCT, M.Sc., B.Ed., B.Sc.
preney@sharcnet.ca / preney@uwindsor.ca

School of Computer Science / Office of Research and Innovation Services (ORIS)
University of Windsor, Windsor, Ontario, Canada

Copyright © 2023 Paul Preney. All Rights Reserved.

Jan. 17, 2024

1 / 21

mailto:preney@sharcnet.ca
mailto:preney@uwindsor.ca


Table of Contents

Resource Contention
Dealing with Resource Contention
An Example

False Sharing
Dealing With False Sharing

2 / 21



Resource Contention

Resource contention occurs when there is a need to access a shared resource
involving multiple entities running concurrently.

3 / 21



Resource Contention (con’t)

Restated, resource contention occurs when multiple processes/threads of execution
attempt to use the same shared resource.

4 / 21



Resource Contention (con’t)

If the same shared resource only has one value which exists and is only read from by all
processes/threads of execution, then there won’t be an issue.
Why? All processes/threads of execution will read the same value.

5 / 21



Resource Contention (con’t)

Contention problems occur when the same shared resource’s value is (or may be)
updated during the time period processes / threads of execution may access that
resource.
Which value will be read? Which value will get updated / written? etc. This is a big
problem.

6 / 21



Resource Contention

Computing hardware (CPUs, GPUs, etc.), operating systems, programming languages and
libraries all have constructs to deal with resource contention issues.
Resource contention is handled in programming languages and libraries using constructs
such as: mutexes, locks/semaphores, atomics, fences/barriers, etc.
Doing nothing about resource contention is not a solution as code that performs reads and
writes concurrently without properly dealing with contention is incorrect code and
may/will produce incorrect values.

7 / 21



Resource Contention

Suppose you are in a room with 3 other persons.
Each person has a pencil and an eraser they can write and erase with.
There is only one shared piece of paper capable of showing only one value written
to it at a time.

If someone wants to update the value on the paper, one must first erase it and write a
new value.

There is no problem if everyone only needs to read what is on the shared piece of
paper.
But if anyone needs to update the value, then there is a problem.

8 / 21



Resource Contention (con’t)

When a person needs to update the value:
The person needs to acquire the shared piece of paper.
Then erase the value written on the paper.
Then write the updated value to the paper.
Then release the paper back so everyone can read/write to it.

Ideally nobody can read/write to the paper while a person is updating it…hopefully!!

9 / 21



Resource Contention (con’t)

Don’t hope: we can and need to do much better!

10 / 21



Resource Contention (con’t)

Similarly to this example, computer hardware, operating systems, and programming
languages/libraries that deal with concurrency have constructs that address resource
contention.
Modern computers have multiple “persons” (CPUs,GPUs) that can and do have shared
resource contentions (e.g., updating the “shared piece of paper”).

11 / 21



Table of Contents

Resource Contention
False Sharing
Dealing With False Sharing

12 / 21



False Sharing

But there is a kind of shared resource contention that is “hidden” from programmer’s:
false sharing.

13 / 21



False Sharing (con’t)

Imagine:
you are in a room with 3 other persons
each person (including yourself) has a pencil and an eraser
there is one shared piece of paper in the room which you all use
the shared piece of paper can have exactly 4 values on it
each person updates only their own value on the paper and does not read/update
any other person’s value

Specifically notice this: No person is reading or updating any other person’s value as
each person is only reading/updating their own value.

14 / 21



False Sharing (con’t)

But there is a problem:
No person can read/update a value WHILE someone else is updating a their own
value!

i.e., so everyone else must wait while someone is updating a value.
This is significant loss of concurrency as everyone else must wait to read/update their
own value!!
This problem occurs with modern computing hardware that has caches and is called
false sharing.

15 / 21



Table of Contents

Resource Contention
False Sharing
Dealing With False Sharing

16 / 21



Dealing With False Sharing

Dealing with false sharing in program code involves:
recognizing when multiple values are close enough to one another in memory, and,

i.e., these values are effectively “on the same shared sheet of paper”
locating those values further apart in memory.

i.e., using another sheet of paper so their is no sharing the same piece of paper to hold
those values

Really? Yes (sorry!).

17 / 21



Dealing With False Sharing (con’t)

To know whether or not values are effectively “on the same shared piece of paper”:
examine your code for values located close to one other in memory (that are being
read and updated at the same time)

How close? One cache line (typically approx. 64 bytes of memory).
Cache line? What is a cache line?

Computers read and write data to/from memory in terms of cache lines.
A 32-bit computer will typically have a cache line size of 32-bits (4 bytes).
A 64-bit computer will typically have a cache line size of 64-bits (8 bytes).
etc.

18 / 21



Dealing With False Sharing (con’t)

My computer has L1, L2, and L3 caches which are larger than 64 bytes. Does this false
sharing problem matter, in practice, with those as well?

In practice no! :-)

19 / 21



Dealing With False Sharing (con’t)

What can I do in my C++11 or newer code to address such?
use std hardware_destructive_interference_size or
std hardware_constructive_interference_size

These values are effectively the cache line size.
In the worst case, if these are unavailable with your compiler than hard-code your
cache line size (or use 64) when using alignas in your code.

use alignas when declaring variables that need to be spaced further apart.

20 / 21



Dealing With False Sharing (con’t)

Examples and questions.

21 / 21


	False Sharing and Contention in Parallel Codes
	Title Page
	Resource Contention
	Dealing with Resource Contention
	An Example

	False Sharing
	Dealing With False Sharing


