Hybrid MPI

Paul Preney, OCT, M.Sc., B.Ed., B.Sc.

preney@sharcnet.ca

School of Computer Science
University of Windsor
Windsor, Ontario, Canada

Copyright (© 2021 Paul Preney. All Rights Reserved.

July 14, 2021

A NET"

1/25

mailto:preney@sharcnet.ca

Table of Contents

@ Introduction

2/25

What is Hybrid MPI?

Hybrid MPI is combining MPI with other concurrent programming models within the
same program, e.g.,

@ MPI + pthreads code

MPI + OpenMP code

MPI + Threaded Building Blocks (TBB)
MPI + CUDA

MPI + OpenMP + CUDA

etc.

3/25

What is MPI?

MPI stands for Message Passing Interface and:
@ MPI enables writing parallel code.
@ MPI programs are comprised of a number of MPI| processes.

MPI inter-process communication is done by passing messages.

MPI on clusters is designed to take advantage of special high-speed
interconnects between nodes.

@ Each MPI process can be run on a different node/computer.

@ Each MPI process' address space is separate from all other processes.

4/25

What Is A Thread?

A thread-of-execution is:
@ is able to be executed concurrently relative to other threads-of-execution

@ a construct that has an independent set of values for a single core’s registers

A thread:
@ can be implemented as a software construct, and/or,
e e.g., allowing more threads than available hardware cores
@ can be tied directly to hardware.
e e.g., n thread(s) per hardware unit

5/25

What Is A Process?

A process:
@ runs on a single node/computer

o is scheduled and controlled by the operating system
@ is comprised of one or more threads-of-execution

e A serial or single-threaded program has exactly one thread-of-execution.
o A parallel or multi-threaded program has more than one thread-of-execution.

e is allocated/obtains access to resources which all of its threads-of-execution can
access

e e.g., RAM assigned to a process so its threads-of-execution can freely access it
e NOTE: Resource contention must be handled using various forms of
synchronization, e.g., barriers, fences, locks, atomics, etc.

@ is unable to access the resources allocated to or obtained by other processes
e except when permitted by special operating system calls or by hardware

6/25

What Is A Program?

A program:
@ is made up of one or more interconnected processes that

@ functions as a single executable entity

Examples:
@ scripts,
@ executable/.exe files,
@ MPI programs running over a number of nodes,

@ etc.

7/25

Table of Contents

@ Hybrid MPI

8/25

What is Hybrid MPI?

Hybrid MPI is combining MPI with other concurrent programming models within the
same program, e.g.,

@ MPI + pthreads code

MPI + OpenMP code

MPI + Threaded Building Blocks (TBB)
MPI + CUDA

MPI + OpenMP + CUDA

etc.

9/25

Why Hybrid MPI?

MPI makes it easy to communicate messages between nodes/computers.

@ e.g., one does not need to be concerned with how to make use of a cluster's
high-speed interconnection fabric

Hybrid MPI:

@ allows one to leverage features of other frameworks + MPI
@ allows one to transform existing single-node code and make it work across nodes.

e e.g., one needs more cores for processing
e e.g., often one cannot afford to change/rewrite existing single-node code

10/25

Why Hybrid MPI? (con't)

Without MPI:

@ one would have to write code to communicate over high-speed interconnection
fabrics

o Different clusters may not use the same fabric.
e One may also need to wholly or partially implement topologies, scatters, gathers,
broadcasts, reductions, etc. when directly programming with a fabric's API.

11/25

Why Not Hybrid MPI?

Non-MPI code might perform worse than pure MPI code within a node.
@ It is easy to have all threads idle except one when performing MPl communication.
@ There may be issues with affinity, data placement, cache coherence, etc.
e e.g., whole node jobs that aim to achieve maximum performance
@ Overall the code is more complicated to maintain and enhance over time.
e e.g., MPI API calls + pthreads/OpenMP/CUDA/etc. API calls

Always benchmark and review design decisions concerning your code.

12/25

Writing Hybrid MPI Code

If starting from scratch, a common approach is:
@ Start by writing sequential code that solves the problem.

@ Then parallelize the sequential code using threads, e.g.,
pthreads/OpenMP/TBB/etc.

@ Then wrap MPI around such to run code across nodes.

If one already has pthreads/OpenMP/TBB/etc. code:
@ Wrap MPI around such to run code across nodes.
e NOTE: This avoids having to rewrite, test, and debug existing code.

13/25

Writing Hybrid MPI Code (con't)

A typical MPI program has this structure:

basic-mpi.c
1 #include <stdio.h>
2 #include <mpi.h>

3

4 int main(int argc, char xargv[])

5 {

6 MPI_Init(&argc, &argv);

7

8 int rank, nprocs;

9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
11 printf("Hello from rank 7%d of %d.\n", rank, nprocs);

13 MPI_Finalize();

14 /25

Writing Hybrid MPI Code (con't)

To make this program a hybrid MPI program, change the call to MPI_Init() to
MPI_Init_thread(), e.g.,

basic-hybrid-mpi.c

1 #include <stdto.h>

2 #include <mpi.h>

3

4 int main(int argc, char *argv[])

5 {

6 int mpi_init_provided = 0;

7 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided) ;
8 if (mpi_init_provided < MPI_THREAD_MULTIPLE)

9

10 fprintf (stderr, "ERROR: Unable to establish required environment.\n");
11 MPI_Abort (MPI_COMM_WORLD, 1);

12}

13

14 /SF #/

15 MPI_Finalize();

16 }

15/25

MPI_THREAD_* Values

MPI_Init_thread() requires one of four values:
@ MPI_THREAD_SINGLE: Only one thread exists in the application.
e equivalent to calling MPI_Init ()
@ MPI_THREAD_FUNNELED: Multithreaded, only main thread can make MPI calls.

e i.e., the thread that called MPI_Init_thread()
e i.e., MPI_Is_thread_main(&some_int_var) sets int_var to true (a non-zero
value) when called from the main thread

@ MPI_THREAD_SERIALIZED: Multithreaded, only one thread at a time can make
an MPI call.

e e.g., the programmer may need to wrap MPI calls with barriers, fences, locks, etc.

@ MPI_THREAD_MULTIPLE: Multithreaded, MPI calls are thread-safe.

16/25

MPI_THREAD _* Values (con't)

The call to MPI_Init_thread() sets its fourth (i.e., last) argument to the
MPI_THREAD_x* value that the current MPI implementation supports.

basic-hybrid-mpi.c

1 #include <stdio.h>
2 #include <mpi.h>

3

4 int main(int argc, char *argv([])

5 {

© 0 N O

10

12
13
14
15

int mpi_init_provided = 0;
MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided) ;
if (mpi_init_provided < MPI_THREAD_MULTIPLE)

{
fprintf (stderr, "ERROR: Unable to establish required environment.\n");
MPI_Abort (MPI_COMM_WORLD, 1);

}

/xo %/

MPI_Finalize();

17/25

Example Slurm sbatch Job

W N =

© 0 N o wu

10

sbatch-simple-hybrid.sh

#!/bin/bash

#SBATCH --ntasks=3 # Total number of MPI ranks
#SBATCH --cpus—per—task=2 # Total number of threads per rank
#SBATCH --mem-per-cpu=1000M # Total RAM per CPU

#SBATCH --time 1-00:00
place other SBATCH stipulations here tif needed

module load openmpi

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK
srun ./a_hybrid_mpi_openmp_program.exe

which can be submitted with:

@ sbatch -A your-account sbatch-simple-hybrid.sh

18/25

Example mpirun command

If running on your own computer, use ——bind-to none with mpirun, e.g.,
@ OMP_NUM_THREADS=2 mpirun --bind-to none -np 3 ./mpi-omp-prog.exe
e i.e., 3 MPI ranks with 2 (OpenMP) threads per MPI rank

19/25

Example mpirun command (con't)

Binding Options

@ Slurm’s srun and MPI's mpirun allow one to bind to CPU cores, sockets, etc.

@ If you are not setting such explicitly, then you may (or may not) need to also use
the —-bind-to none when using mpirun.
e mpirun's --bind-to none ensures your processes and threads are not explicitly
bound to any CPU code, etc.
o Examine man mpirun for mpirun’s options.
e Examine man sbatch, man salloc, man srun for Slurm’s binding options.
o NOTE: Such options are subject to Linux’ cgroup restrictions, e.g., as set by Slurm.

20/25

OpenMP-+MPI program

example-mpi-omp.c
1 #include <stdio.h>

2 #include <omp.h>

3 #include <mpi.h>

4

5 int main(int argc, char *argv([])

6 {

7 int mpi_init_provided = 0;

8 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided);
9 if (mpi_init_provided < MPI_THREAD_MULTIPLE)

10 1

11 fprintf (stderr, "ERROR: Unable to establish required MPI environment.\n");
12 MPI_Abort (MPI_COMM_WORLD, 1);

13 return 1;

14}

15

21/25

A Simple OpenMP-+MPI program (con't)

example-mpi-omp.c

16 int nprocs, rank;
17 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
18 MPI_Comm_rank (MPI_COMM_WORLD, &rank);

19

20 #pragma omp parallel default(shared)

21 o

22 int num_threads = omp_get_num_threads();

23 int tid = omp_get_thread_num();

24 printf ("Hello from thread %d of %d from MPI rank %d of %d\n", tid, num_threads, rank,
< mnprocs);

25)

26

27 MPI_Finalize();

28 }

22/25

A Simple OpenMP-+MPI program (con't)

Compile with:
mpicc -o example-mpi-omp.exe example-mpi-omp.c -fopenmp

This can be run locally with:
OMP_NUM_THREADS=2 mpirun -np 3 --bind-to none ./example-mpi-omp.exe

Or use Slurm’s sbatch or salloc.

@ Use srun instead of mpirun.

23/25

Table of Contents

@ Benchmarking in MPI: MPI_Wtime()

24 /25

Benchmarking in MPI: MPI_Wtime()

mpi-bench.c
Ve
// record start time in rank O...
double time_point = 0.0;
if (rank == 0)
time_point = MPI_Wtime();

// ... do something ...

© 0N W N =

// output elapsed time in rank O...

if (rank == 0)

11 {

12 time_point = MPI_Wtime() - time_point;

13 printf("time: %lg seconds\n", time_point);
14 F

15 // ...

un
o

25 /25

	Hybrid MPI
	Title Page
	Introduction
	What is Hybrid MPI?
	What is MPI?
	What Is A Thread?
	What Is A Process?
	What Is A Program?

	Hybrid MPI
	What is Hybrid MPI?
	Why Hybrid MPI?
	Why Not Hybrid MPI?
	Writing Hybrid MPI Code
	MPI_THREAD_* Values
	Example Slurm sbatch Job
	Example mpirun command
	A Simple OpenMP+MPI program

	Benchmarking in MPI: MPI_Wtime()

