
Hybrid MPI

Paul Preney, OCT, M.Sc., B.Ed., B.Sc.
preney@sharcnet.ca

School of Computer Science
University of Windsor

Windsor, Ontario, Canada

Copyright © 2021 Paul Preney. All Rights Reserved.

July 14, 2021

1 / 25

mailto:preney@sharcnet.ca

Table of Contents

Introduction

Hybrid MPI

Benchmarking in MPI: MPI Wtime()

2 / 25

What is Hybrid MPI?

Hybrid MPI is combining MPI with other concurrent programming models within the
same program, e.g.,

MPI + pthreads code

MPI + OpenMP code

MPI + Threaded Building Blocks (TBB)

MPI + CUDA

MPI + OpenMP + CUDA

etc.

3 / 25

What is MPI?

MPI stands for Message Passing Interface and:

MPI enables writing parallel code.

MPI programs are comprised of a number of MPI processes.

MPI inter-process communication is done by passing messages.

MPI on clusters is designed to take advantage of special high-speed
interconnects between nodes.

Each MPI process can be run on a different node/computer.

Each MPI process’ address space is separate from all other processes.

4 / 25

What Is A Thread?

A thread-of-execution is:

is able to be executed concurrently relative to other threads-of-execution

a construct that has an independent set of values for a single core’s registers

A thread:

can be implemented as a software construct, and/or,

e.g., allowing more threads than available hardware cores

can be tied directly to hardware.

e.g., n thread(s) per hardware unit

5 / 25

What Is A Process?

A process:

runs on a single node/computer

is scheduled and controlled by the operating system

is comprised of one or more threads-of-execution

A serial or single-threaded program has exactly one thread-of-execution.
A parallel or multi-threaded program has more than one thread-of-execution.

is allocated/obtains access to resources which all of its threads-of-execution can
access

e.g., RAM assigned to a process so its threads-of-execution can freely access it
NOTE: Resource contention must be handled using various forms of
synchronization, e.g., barriers, fences, locks, atomics, etc.

is unable to access the resources allocated to or obtained by other processes
except when permitted by special operating system calls or by hardware

6 / 25

What Is A Program?

A program:

is made up of one or more interconnected processes that

functions as a single executable entity

Examples:

scripts,

executable/.exe files,

MPI programs running over a number of nodes,

etc.

7 / 25

Table of Contents

Introduction

Hybrid MPI

Benchmarking in MPI: MPI Wtime()

8 / 25

What is Hybrid MPI?

Hybrid MPI is combining MPI with other concurrent programming models within the
same program, e.g.,

MPI + pthreads code

MPI + OpenMP code

MPI + Threaded Building Blocks (TBB)

MPI + CUDA

MPI + OpenMP + CUDA

etc.

9 / 25

Why Hybrid MPI?

MPI makes it easy to communicate messages between nodes/computers.

e.g., one does not need to be concerned with how to make use of a cluster’s
high-speed interconnection fabric

Hybrid MPI:

allows one to leverage features of other frameworks + MPI

allows one to transform existing single-node code and make it work across nodes.

e.g., one needs more cores for processing

e.g., often one cannot afford to change/rewrite existing single-node code

10 / 25

Why Hybrid MPI? (con’t)

Without MPI:

one would have to write code to communicate over high-speed interconnection
fabrics

Different clusters may not use the same fabric.

One may also need to wholly or partially implement topologies, scatters, gathers,
broadcasts, reductions, etc. when directly programming with a fabric’s API.

11 / 25

Why Not Hybrid MPI?

Non-MPI code might perform worse than pure MPI code within a node.

It is easy to have all threads idle except one when performing MPI communication.

There may be issues with affinity, data placement, cache coherence, etc.

e.g., whole node jobs that aim to achieve maximum performance

Overall the code is more complicated to maintain and enhance over time.

e.g., MPI API calls + pthreads/OpenMP/CUDA/etc. API calls

Always benchmark and review design decisions concerning your code.

12 / 25

Writing Hybrid MPI Code

If starting from scratch, a common approach is:

Start by writing sequential code that solves the problem.

Then parallelize the sequential code using threads, e.g.,
pthreads/OpenMP/TBB/etc.

Then wrap MPI around such to run code across nodes.

If one already has pthreads/OpenMP/TBB/etc. code:

Wrap MPI around such to run code across nodes.

NOTE: This avoids having to rewrite, test, and debug existing code.

13 / 25

Writing Hybrid MPI Code (con’t)

A typical MPI program has this structure:
basic-mpi.c

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(int argc, char *argv[])

5 {

6 MPI_Init(&argc, &argv);

7

8 int rank, nprocs;

9 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

10 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

11 printf("Hello from rank %d of %d.\n", rank, nprocs);

12

13 MPI_Finalize();

14 }

14 / 25

Writing Hybrid MPI Code (con’t)

To make this program a hybrid MPI program, change the call to MPI_Init() to
MPI_Init_thread(), e.g.,

basic-hybrid-mpi.c

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(int argc, char *argv[])

5 {

6 int mpi_init_provided = 0;

7 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided);

8 if (mpi_init_provided < MPI_THREAD_MULTIPLE)

9 {

10 fprintf(stderr, "ERROR: Unable to establish required environment.\n");

11 MPI_Abort(MPI_COMM_WORLD, 1);

12 }

13

14 /* ... */

15 MPI_Finalize();

16 }

15 / 25

MPI THREAD * Values

MPI_Init_thread() requires one of four values:

MPI_THREAD_SINGLE: Only one thread exists in the application.

equivalent to calling MPI_Init()

MPI_THREAD_FUNNELED: Multithreaded, only main thread can make MPI calls.

i.e., the thread that called MPI_Init_thread()

i.e., MPI_Is_thread_main(&some_int_var) sets int_var to true (a non-zero
value) when called from the main thread

MPI_THREAD_SERIALIZED: Multithreaded, only one thread at a time can make
an MPI call.

e.g., the programmer may need to wrap MPI calls with barriers, fences, locks, etc.

MPI_THREAD_MULTIPLE: Multithreaded, MPI calls are thread-safe.

16 / 25

MPI THREAD * Values (con’t)

The call to MPI_Init_thread() sets its fourth (i.e., last) argument to the
MPI_THREAD_* value that the current MPI implementation supports.

basic-hybrid-mpi.c

1 #include <stdio.h>

2 #include <mpi.h>

3

4 int main(int argc, char *argv[])

5 {

6 int mpi_init_provided = 0;

7 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided);

8 if (mpi_init_provided < MPI_THREAD_MULTIPLE)

9 {

10 fprintf(stderr, "ERROR: Unable to establish required environment.\n");

11 MPI_Abort(MPI_COMM_WORLD, 1);

12 }

13

14 /* ... */

15 MPI_Finalize();

16 }

17 / 25

Example Slurm sbatch Job

sbatch-simple-hybrid.sh

1 #!/bin/bash

2 #SBATCH --ntasks=3 # Total number of MPI ranks

3 #SBATCH --cpus-per-task=2 # Total number of threads per rank

4 #SBATCH --mem-per-cpu=1000M # Total RAM per CPU

5 #SBATCH --time 1-00:00

6 # place other SBATCH stipulations here if needed

7

8 module load openmpi

9

10 export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

11 srun ./a_hybrid_mpi_openmp_program.exe

which can be submitted with:

sbatch -A your-account sbatch-simple-hybrid.sh

18 / 25

Example mpirun command

If running on your own computer, use --bind-to none with mpirun, e.g.,

OMP_NUM_THREADS=2 mpirun --bind-to none -np 3 ./mpi-omp-prog.exe

i.e., 3 MPI ranks with 2 (OpenMP) threads per MPI rank

19 / 25

Example mpirun command (con’t)

Binding Options

Slurm’s srun and MPI’s mpirun allow one to bind to CPU cores, sockets, etc.

If you are not setting such explicitly, then you may (or may not) need to also use
the --bind-to none when using mpirun.

mpirun’s --bind-to none ensures your processes and threads are not explicitly
bound to any CPU code, etc.
Examine man mpirun for mpirun’s options.
Examine man sbatch, man salloc, man srun for Slurm’s binding options.

NOTE: Such options are subject to Linux’ cgroup restrictions, e.g., as set by Slurm.

20 / 25

A Simple OpenMP+MPI program

example-mpi-omp.c

1 #include <stdio.h>

2 #include <omp.h>

3 #include <mpi.h>

4

5 int main(int argc, char *argv[])

6 {

7 int mpi_init_provided = 0;

8 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpi_init_provided);

9 if (mpi_init_provided < MPI_THREAD_MULTIPLE)

10 {

11 fprintf(stderr, "ERROR: Unable to establish required MPI environment.\n");

12 MPI_Abort(MPI_COMM_WORLD, 1);

13 return 1;

14 }

15

21 / 25

A Simple OpenMP+MPI program (con’t)

example-mpi-omp.c

16 int nprocs, rank;

17 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

18 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

19

20 #pragma omp parallel default(shared)

21 {

22 int num_threads = omp_get_num_threads();

23 int tid = omp_get_thread_num();

24 printf("Hello from thread %d of %d from MPI rank %d of %d\n", tid, num_threads, rank,

nprocs);↪→
25 }

26

27 MPI_Finalize();

28 }

22 / 25

A Simple OpenMP+MPI program (con’t)

Compile with:
mpicc -o example-mpi-omp.exe example-mpi-omp.c -fopenmp

This can be run locally with:
OMP_NUM_THREADS=2 mpirun -np 3 --bind-to none ./example-mpi-omp.exe

Or use Slurm’s sbatch or salloc.

Use srun instead of mpirun.

23 / 25

Table of Contents

Introduction

Hybrid MPI

Benchmarking in MPI: MPI Wtime()

24 / 25

Benchmarking in MPI: MPI Wtime()

mpi-bench.c

1 // ...

2 // record start time in rank 0...

3 double time_point = 0.0;

4 if (rank == 0)

5 time_point = MPI_Wtime();

6

7 // ... do something ...

8

9 // output elapsed time in rank 0...

10 if (rank == 0)

11 {

12 time_point = MPI_Wtime() - time_point;

13 printf("time: %lg seconds\n", time_point);

14 }

15 // ...

25 / 25

	Hybrid MPI
	Title Page
	Introduction
	What is Hybrid MPI?
	What is MPI?
	What Is A Thread?
	What Is A Process?
	What Is A Program?

	Hybrid MPI
	What is Hybrid MPI?
	Why Hybrid MPI?
	Why Not Hybrid MPI?
	Writing Hybrid MPI Code
	MPI_THREAD_* Values
	Example Slurm sbatch Job
	Example mpirun command
	A Simple OpenMP+MPI program

	Benchmarking in MPI: MPI_Wtime()

