

Debugging
 at SHARCNET

General Interest Webinar
18 06 2014

Hugh Merz

Session Outline

● How to diagnose job or program failures on
SHARCNET systems

● How to identify and correct common
programming bugs

● The use of gdb for debugging serial programs

● The use of DDT for debugging parallel programs

Identifying Bugs and Errors

● Typical signs that your

program is buggy

include:

● It fails to complete (crashes)
● It produces incorrect output (!##%?)
● It fails to progress (hangs)

Diagnosing Job Failures

● Job (process) exit status (code)

● Job Scheduling and output handling
● LSF vs. Torque/Maui/Moab , SQ

● Job Identifier (jobid)

● Web Portal Jobs Table

● The system's view of a job:
● sqjobs -l || bhist || qstat

● Inspecting running jobs
● sqjobs -L || SHARCNET Ganglia

https://www.sharcnet.ca/my/profile/mysn
http://ganglia.sharcnet.ca/

Common Error Signals
Signal Name Description

8 SIGFPE

11 SIGSEGV

Aborted 6 SIGABRT

Kill 9 SIGKILL

OS
signal #

OS signal
name

Floating
point

exception

The program attempted an arithmetic
operation with values that do not make

sense (eg. divide by zero)

Segmentation
fault

The program accessed memory incorrectly
(eg. accessing an array beyond it's

declared bounds)

Generated by the runtime library of the
program or a library it uses, after
having detected a failure condition

The job management system terminates a
job when it exceeds resource limits

(eg. Runtime or memory)

Note: job exit status is typically 0 (success), negative (system issue)
or 128+”OS signal #” when there is a failure

Web Portal Jobs Table

The First “Bug”

9 September 1947

Diagnosing the situation

● pay attention to compiler warnings

● inspect the job exit code in the web portal

● look at the job output file
● may indicate a problem with the state of the

program or a lack of progress
● may contain a runtime error message, signal

from the operating system or error from the job
management system that helps identify the
problem

Common Bugs

● Arithmetic
● infinities, out of

range
● Logic

● infinite loop
● Syntax

● wrong operator,
arguments

● Resource starvation
● memory leak

● Parallel
● race conditions
● deadlock

● Misuse
● wrong initial

conditions /
insufficient
checking / variable
initialization

Floating Point Exceptions

● compilers/runtimes handle floating point
exceptions differently
● Some allow turning this on/off during compilation
● Pathscale: -TENV:simd_*mask=OFF
● Intel (fortran only!): -fpe0
● gfortran: -ffpe-trap=invalid,zero,overflow

● Can also trap exceptions via library functions
● glibc: feenableexcept()

– compile and link to trapfpe.c code

Correcting Bugs

● if no error message is generated or if the
message is insufficient to identify the
problematic code one can use a debugger

● A debugger is a program that allows one to
manipulate and inspect a second program as it
is running

● Typically, the program should be compiled to
include a symbol table (often -g) if you are
going to run it in a debugger

gdb

● GNU Project Debugger

● Freely available, runs on most *nix systems,
open source

● Works with a wide variety of languages

● Demonstration loosely following this tutorial
in our help wiki:
● Using gdb in the Online Training Centre

http://www.gnu.org/software/gdb/
https://www.sharcnet.ca/help/index.php/Common_Bugs_and_Debugging_with_gdb#Using_gdb

Debugging tips

● If your bug isn't repeatable:
● Race condition? Randomness?
● If a bug only appears with certain

configurations / initial conditions it may be due
to resource starvation or incorrect usage

● When reporting problems with the underlying
system/software, provide a simple (and quick)
test case, if possible

● Incorrect validation of input can result in many
different errors!

Debugging tips

● Most Fortran compilers support runtime
checking for out-of-bound array accesses, eg.
● $ f90 -ffortran-bounds-check outbounds.f90

● Ensure that variables are defined with sufficient
precision (overflow/underflow)

● Some MPIs support reporting more diagnostic
information (eg. linking with hp-mpi's -ldmpi)

● Functionality in SHARCNET job submission to
automatically generate a backtrace (LSF only):
● sqsub –backtrace ...

DDT

● In addition to features in gdb:
● GUI debugger (tabbed interface)
● Shows multiple source files w/ syntax

highlighting
● Support for MPI, threaded and GPGPU debugging

– Independant and group process/thread control
(breakpoints, syncronization, comparisons)

● inspection of variables (visualization, watches,
checking pointers)

● Visualization of MPI message queues
● memory debugging!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

